Limit theorems for a model of interacting two-types particles generalizing the Bartlett–McKendrick epidemic process
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 385-391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

he present paper is a continuation of [A. N. Startsev, Theory Probab. Appl., 46 (2002), pp. 431–447] in which limit theorems are established for the number of particles changing their types to the terminal moment of the process given that the initial numbers of particles of both types tend to infinity. Here this problem is solved under the conditions that the initial number of particles having “energy” is fixed. This assumption leads to models more actual for applications, in particular, in epidemiology. A part of the obtained results (Theorems 1 and 2) has been announced in [M. Mirzaev and A. N. Startsev, Proceedings of the International Conference “Advances in Statistical Inferential Methods” (Almaty, 2003), NITS “Fylym,” Almaty, 2003, pp. 81–85].
Mots-clés : interaction of particles
Keywords: non-Markovian models, number of particles changing types, limit theorems.
@article{TVP_2006_51_2_a8,
     author = {M. Mirzaev and A. N. Startsev},
     title = {Limit theorems for a model of interacting two-types particles generalizing the {Bartlett{\textendash}McKendrick} epidemic process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {385--391},
     year = {2006},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a8/}
}
TY  - JOUR
AU  - M. Mirzaev
AU  - A. N. Startsev
TI  - Limit theorems for a model of interacting two-types particles generalizing the Bartlett–McKendrick epidemic process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 385
EP  - 391
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a8/
LA  - ru
ID  - TVP_2006_51_2_a8
ER  - 
%0 Journal Article
%A M. Mirzaev
%A A. N. Startsev
%T Limit theorems for a model of interacting two-types particles generalizing the Bartlett–McKendrick epidemic process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 385-391
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a8/
%G ru
%F TVP_2006_51_2_a8
M. Mirzaev; A. N. Startsev. Limit theorems for a model of interacting two-types particles generalizing the Bartlett–McKendrick epidemic process. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 385-391. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a8/

[1] Startsev A. N., “Ob odnoi modeli s vzaimodeistviem chastits dvukh tipov, obobschayuschei protsess epidemii Bartletta–Mak-Kendrika”, Teoriya veroyatn. i ee primen., 46:3 (2001), 463–482 | MR | Zbl

[2] Mirzaev M., Startsev A. N., “Limit theorems in a non-Markovian model of interacting two-types particles”, Proceedings of the International Conference “Advances in Statistical Inferential Methods” (Almaty, 2003), NITs “Fylym”, Almaty, 2003, 81–85

[3] Daley D. J., Gani J., Epidemic Modelling: An Introduction, Cambridge Univ. Press, Cambridge, 1999, 213 pp. | MR | Zbl

[4] Nagaev A. V., “Nekotorye predelnye teoremy dlya odnoi stokhasticheskoi modeli epidemii”, Matem. zametki, 13:5 (1973), 709–716 | MR | Zbl

[5] Sevastyanov B. A., “Vetvyaschiesya protsessy s vzaimodeistviem chastits”, Tezisy dokladov III Mezhdunarodnoi Vilnyusskoi konferentsii po teorii veroyatnostei i matematicheskoi statistike, T. II, Institut matematiki i kibernetiki AN LitSSR, Vilnyus, 1981, 139–140

[6] Kalinkin A. V., “Finalnye veroyatnosti vetvyaschegosya protsessa s vzaimodeistviem chastits i protsess epidemii”, Teoriya veroyatn. i ee primen., 43:4 (1998), 773–780 | MR | Zbl

[7] Kalinkin A. V., “Markovskie vetvyaschiesya protsessy s vzaimodeistviem”, Uspekhi matem. nauk, 57:2(344) (2002), 23–84 | MR | Zbl

[8] Sellke T., “On the asymptotic distribution of the size of a stochastic epidemic”, J. Appl. Probab., 20:2 (1983), 390–394 | DOI | MR | Zbl

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984, 751 pp.

[10] Takach L., Kombinatornye metody v teorii sluchainykh protsessov, Mir, M., 1971, 264 pp. | MR

[11] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982, 256 pp. | MR | Zbl