Keywords: non-Markovian models, number of particles changing types, limit theorems.
@article{TVP_2006_51_2_a8,
author = {M. Mirzaev and A. N. Startsev},
title = {Limit theorems for a model of interacting two-types particles generalizing the {Bartlett{\textendash}McKendrick} epidemic process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {385--391},
year = {2006},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a8/}
}
TY - JOUR AU - M. Mirzaev AU - A. N. Startsev TI - Limit theorems for a model of interacting two-types particles generalizing the Bartlett–McKendrick epidemic process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 385 EP - 391 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a8/ LA - ru ID - TVP_2006_51_2_a8 ER -
%0 Journal Article %A M. Mirzaev %A A. N. Startsev %T Limit theorems for a model of interacting two-types particles generalizing the Bartlett–McKendrick epidemic process %J Teoriâ veroâtnostej i ee primeneniâ %D 2006 %P 385-391 %V 51 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a8/ %G ru %F TVP_2006_51_2_a8
M. Mirzaev; A. N. Startsev. Limit theorems for a model of interacting two-types particles generalizing the Bartlett–McKendrick epidemic process. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 385-391. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a8/
[1] Startsev A. N., “Ob odnoi modeli s vzaimodeistviem chastits dvukh tipov, obobschayuschei protsess epidemii Bartletta–Mak-Kendrika”, Teoriya veroyatn. i ee primen., 46:3 (2001), 463–482 | MR | Zbl
[2] Mirzaev M., Startsev A. N., “Limit theorems in a non-Markovian model of interacting two-types particles”, Proceedings of the International Conference “Advances in Statistical Inferential Methods” (Almaty, 2003), NITs “Fylym”, Almaty, 2003, 81–85
[3] Daley D. J., Gani J., Epidemic Modelling: An Introduction, Cambridge Univ. Press, Cambridge, 1999, 213 pp. | MR | Zbl
[4] Nagaev A. V., “Nekotorye predelnye teoremy dlya odnoi stokhasticheskoi modeli epidemii”, Matem. zametki, 13:5 (1973), 709–716 | MR | Zbl
[5] Sevastyanov B. A., “Vetvyaschiesya protsessy s vzaimodeistviem chastits”, Tezisy dokladov III Mezhdunarodnoi Vilnyusskoi konferentsii po teorii veroyatnostei i matematicheskoi statistike, T. II, Institut matematiki i kibernetiki AN LitSSR, Vilnyus, 1981, 139–140
[6] Kalinkin A. V., “Finalnye veroyatnosti vetvyaschegosya protsessa s vzaimodeistviem chastits i protsess epidemii”, Teoriya veroyatn. i ee primen., 43:4 (1998), 773–780 | MR | Zbl
[7] Kalinkin A. V., “Markovskie vetvyaschiesya protsessy s vzaimodeistviem”, Uspekhi matem. nauk, 57:2(344) (2002), 23–84 | MR | Zbl
[8] Sellke T., “On the asymptotic distribution of the size of a stochastic epidemic”, J. Appl. Probab., 20:2 (1983), 390–394 | DOI | MR | Zbl
[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984, 751 pp.
[10] Takach L., Kombinatornye metody v teorii sluchainykh protsessov, Mir, M., 1971, 264 pp. | MR
[11] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982, 256 pp. | MR | Zbl