Asymptotic properties of conditional quantiles for a class of symmetric distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 374-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to studying the asymptotic properties of conditional distributions for one class of symmetric measures on space $\textbf R^\infty$. Explicit formulae of infinite-dimensional conditional quantiles are obtained for distributions of this class.
Keywords: symmetric measures, de Finetti's theorem, transformations of independence, almost sure convergence.
Mots-clés : conditional distributions, conditional quantiles
@article{TVP_2006_51_2_a6,
     author = {E. M. Knutova and S. Ya. Shatskikh},
     title = {Asymptotic properties of conditional quantiles for a class of symmetric distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {374--382},
     year = {2006},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a6/}
}
TY  - JOUR
AU  - E. M. Knutova
AU  - S. Ya. Shatskikh
TI  - Asymptotic properties of conditional quantiles for a class of symmetric distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 374
EP  - 382
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a6/
LA  - ru
ID  - TVP_2006_51_2_a6
ER  - 
%0 Journal Article
%A E. M. Knutova
%A S. Ya. Shatskikh
%T Asymptotic properties of conditional quantiles for a class of symmetric distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 374-382
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a6/
%G ru
%F TVP_2006_51_2_a6
E. M. Knutova; S. Ya. Shatskikh. Asymptotic properties of conditional quantiles for a class of symmetric distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 374-382. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a6/

[1] Rosenblatt M., “Remarks on a multivariate transformation”, Ann. Math. Statist., 23 (1952), 470–472 | DOI | MR | Zbl

[2] Shatskikh S. Ya., “Ob odnom variante preobrazovaniya nezavisimosti”, Teoriya veroyatn. i ee primen., 37:4 (1992), 815–816

[3] Shatskih S. Ya., “Multivariate Cauchy distributions as locally gaussian distributions”, J. Math. Sci. (New York), 78:1 (1996), 102–108 | DOI | MR

[4] Shatskikh S. Ya., “Ustoichivye ellipticheski konturirovannye mery v gilbertovom prostranstve: asimptoticheskie svoistva uslovnykh raspredelenii”, Izv. RAEN, ser. MMMIU, 1999, no. 3, 43–81 | Zbl

[5] Knutova E. M., “Asimptoticheskie svoistva uslovnykh raspredelenii mer Styudenta v gilbertovom prostranstve”, Vestnik SamGU, estestvennonauchn. ser., 2001, no. 4, 42–55 | MR | Zbl

[6] Rüschendorf L., de Valk V., “On regression representation of stochastic processes”, Stochastic Process. Appl., 46:2 (1993), 183–198 | DOI | MR | Zbl

[7] Poiraud-Casanova S., Thomas-Agnan Ch., “Quantiles conditionnels”, J. Société Française de Statistique, 139:4 (1998), 31–44

[8] Dynkin E. B., “Klassy ekvivalentnykh sluchainykh velichin”, Uspekhi matem. nauk, 8:2(54) (1953), 125–130 | MR | Zbl

[9] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.

[10] Takach L., Kombinatornye metody v teorii sluchainykh protsessov, Mir, M., 1971, 264 pp. | MR

[11] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR

[12] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR