@article{TVP_2006_51_2_a5,
author = {A. Hall and M. da Gra\c{c}a Temido},
title = {On the maximum term of {MA} and {Max-AR} models with margins in {Anderson's} class},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {358--373},
year = {2006},
volume = {51},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a5/}
}
TY - JOUR AU - A. Hall AU - M. da Graça Temido TI - On the maximum term of MA and Max-AR models with margins in Anderson's class JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 358 EP - 373 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a5/ LA - en ID - TVP_2006_51_2_a5 ER -
A. Hall; M. da Graça Temido. On the maximum term of MA and Max-AR models with margins in Anderson's class. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 358-373. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a5/
[1] Alpium M. T., “An extremal Markovian sequence”, J. Appl. Probab., 26:2 (1989), 219–232 | DOI | MR
[2] Anderson C. W., “Extreme value theory for a class of discrete distribution with applications to some stochastic processes”, J. Appl. Probab., 7 (1970), 99–113 | DOI | MR | Zbl
[3] Brännäs K., Hall A., “Estimation in integer-valued moving average models”, Appl. Stoch. Models Bus. Ind., 17:3 (2001), 277–291 | DOI | MR | Zbl
[4] Canto e Castro L., de Haan L., Temido M. G., “Rarely observed sample maxima”, Teoriya veroyatn. i ee primen., 45:4 (2000), 779–782 | MR | Zbl
[5] Chernick M. R., Hsing T., McCormick W. P., “Calculating the extremal index for a class of stationary sequences”, Adv. Appl. Probab., 23:4 (1991), 835–850 | DOI | MR | Zbl
[6] Grinevich I. V., “Oblasti prityazheniya maks-poluustoichivykh zakonov pri lineinoi i stepennoi normirovkakh”, Teoriya veroyatn. i ee primen., 38:4 (1993), 787–799 | MR | Zbl
[7] Grinevich I. V., “Maks-poluustoichivye predelnye raspredeleniya, otvechayuschie lineinoi i stepennoi normirovke”, Teoriya veroyatn. i ee primen., 37:4 (1992), 774–776
[8] Hall A., “Extremes of integer-valued moving averages models with exponential type tails”, Extremes, 6:4 (2003), 361–379 | DOI | MR | Zbl
[9] Hall A., A note on the extremes of a particular moving average count data model, Cadernos de Matemática CM04/I-10, Universidade de Aveiro, Aveiro
[10] Hall A., “Extremes of integer-valued moving averages models with regularly varying tails”, Extremes, 4:3 (2001), 219–239 | DOI | MR | Zbl
[11] Hall A., Extremos de sucessĩes de contagem — Do outro lado do espelho, Ph. D. Thesis, University of Lisbon, Lisbon, 1998
[12] Hall A., “Maximum term of a particular autoregressive sequence with discrete margins”, Comm. Statist. Theory Methods, 25:4 (1996), 721–736 | DOI | MR | Zbl
[13] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989, 391 pp. | MR
[14] McCormick W. P., Park Y. S., “Asymptotic analysis of extremes from autoregressive negative binomial processes”, J. Appl. Probab., 29:4 (1992), 904–920 | DOI | MR | Zbl
[15] McCormick W. P., Park Y. S., “Approximating the distribution of the maximum queue length for $M/M/s$ queues”, Queueing and Related Models, Oxford Statist. Sci. Ser., 9, eds. I. Basawa and U. Bhat, Oxford Univ. Press, Oxford, 1992, 240–261 | MR | Zbl
[16] McKenzie E., “Discrete variate time series”, Stochastic Processes: Modelling and Simulation, eds. D. N. Shanbhag and C. R. Rao, North-Holland, Amsterdam, 2003, 573–606 | MR | Zbl
[17] McKenzie E., “Autoregressive moving-average processes with negative-binomial and geometric marginal distributions”, Adv. Appl. Probab., 18:3 (1986), 679–705 | DOI | MR | Zbl
[18] Pancheva E., “Multivariate max-semistable distributions”, Teoriya veroyatn. i ee primen., 37:4 (1992), 794–795
[19] Serfozo R. F., “Extreme values of queue lengths in $M/G/q$ and $GI/M/1$ systems”, Math. Oper. Res., 13:2 (1988), 349–357 | DOI | MR | Zbl
[20] Temido M. G., Classes de leis limite em teoria de valores extremos — estabilidade e semiestabilidade, Ph.D. Thesis, University of Coimbra, Coimbra, 2000
[21] Temido M. G., “Domínios de atracção de funções de distribuição discretas”, Novos Rumos em Estatística, Proceedings of IX Congresso da Sociedade Portuguesa de Estatística. Portuguese Society of Statistics, 2002, 415–426
[22] Temido M. G., Canto e Castro L., “Max-semistable laws in extremes of stationary random sequences”, Teoriya veroyatn. i ee primen., 47:2 (2002), 402–410 | MR | Zbl