On the maximum term of MA and Max-AR models with margins in Anderson's class
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 358-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider several integer-valued stationary models of MA and max-AR type and study the limiting distribution of the maximum term after appropriate normalization. In particular, we consider marginal distributions which do not belong to the domain of attraction of any extreme value distribution but exhibit a quasi-stable limiting behavior in the sense of Anderson [J. Appl. Probab., 7 (1970), pp. 99–113] and therefore belong to the domain of attraction of a max-semistable law. Examples of such distributions are the negative binomial and the logarithmic distribution which are widely used to model real data applications. By verifying appropriate dependence conditions we obtain the limiting distribution of the maximum term for the models under consideration. Motivation comes from the analysis of the extremal behavior of integer-valued data requiring specific time series modeling.
Keywords: integer-valued stationary sequences, extremal index, binomial thinning.
@article{TVP_2006_51_2_a5,
     author = {A. Hall and M. da Gra\c{c}a Temido},
     title = {On the maximum term of {MA} and {Max-AR} models with margins in {Anderson's} class},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {358--373},
     year = {2006},
     volume = {51},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a5/}
}
TY  - JOUR
AU  - A. Hall
AU  - M. da Graça Temido
TI  - On the maximum term of MA and Max-AR models with margins in Anderson's class
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 358
EP  - 373
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a5/
LA  - en
ID  - TVP_2006_51_2_a5
ER  - 
%0 Journal Article
%A A. Hall
%A M. da Graça Temido
%T On the maximum term of MA and Max-AR models with margins in Anderson's class
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 358-373
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a5/
%G en
%F TVP_2006_51_2_a5
A. Hall; M. da Graça Temido. On the maximum term of MA and Max-AR models with margins in Anderson's class. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 358-373. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a5/

[1] Alpium M. T., “An extremal Markovian sequence”, J. Appl. Probab., 26:2 (1989), 219–232 | DOI | MR

[2] Anderson C. W., “Extreme value theory for a class of discrete distribution with applications to some stochastic processes”, J. Appl. Probab., 7 (1970), 99–113 | DOI | MR | Zbl

[3] Brännäs K., Hall A., “Estimation in integer-valued moving average models”, Appl. Stoch. Models Bus. Ind., 17:3 (2001), 277–291 | DOI | MR | Zbl

[4] Canto e Castro L., de Haan L., Temido M. G., “Rarely observed sample maxima”, Teoriya veroyatn. i ee primen., 45:4 (2000), 779–782 | MR | Zbl

[5] Chernick M. R., Hsing T., McCormick W. P., “Calculating the extremal index for a class of stationary sequences”, Adv. Appl. Probab., 23:4 (1991), 835–850 | DOI | MR | Zbl

[6] Grinevich I. V., “Oblasti prityazheniya maks-poluustoichivykh zakonov pri lineinoi i stepennoi normirovkakh”, Teoriya veroyatn. i ee primen., 38:4 (1993), 787–799 | MR | Zbl

[7] Grinevich I. V., “Maks-poluustoichivye predelnye raspredeleniya, otvechayuschie lineinoi i stepennoi normirovke”, Teoriya veroyatn. i ee primen., 37:4 (1992), 774–776

[8] Hall A., “Extremes of integer-valued moving averages models with exponential type tails”, Extremes, 6:4 (2003), 361–379 | DOI | MR | Zbl

[9] Hall A., A note on the extremes of a particular moving average count data model, Cadernos de Matemática CM04/I-10, Universidade de Aveiro, Aveiro

[10] Hall A., “Extremes of integer-valued moving averages models with regularly varying tails”, Extremes, 4:3 (2001), 219–239 | DOI | MR | Zbl

[11] Hall A., Extremos de sucessĩes de contagem — Do outro lado do espelho, Ph. D. Thesis, University of Lisbon, Lisbon, 1998

[12] Hall A., “Maximum term of a particular autoregressive sequence with discrete margins”, Comm. Statist. Theory Methods, 25:4 (1996), 721–736 | DOI | MR | Zbl

[13] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989, 391 pp. | MR

[14] McCormick W. P., Park Y. S., “Asymptotic analysis of extremes from autoregressive negative binomial processes”, J. Appl. Probab., 29:4 (1992), 904–920 | DOI | MR | Zbl

[15] McCormick W. P., Park Y. S., “Approximating the distribution of the maximum queue length for $M/M/s$ queues”, Queueing and Related Models, Oxford Statist. Sci. Ser., 9, eds. I. Basawa and U. Bhat, Oxford Univ. Press, Oxford, 1992, 240–261 | MR | Zbl

[16] McKenzie E., “Discrete variate time series”, Stochastic Processes: Modelling and Simulation, eds. D. N. Shanbhag and C. R. Rao, North-Holland, Amsterdam, 2003, 573–606 | MR | Zbl

[17] McKenzie E., “Autoregressive moving-average processes with negative-binomial and geometric marginal distributions”, Adv. Appl. Probab., 18:3 (1986), 679–705 | DOI | MR | Zbl

[18] Pancheva E., “Multivariate max-semistable distributions”, Teoriya veroyatn. i ee primen., 37:4 (1992), 794–795

[19] Serfozo R. F., “Extreme values of queue lengths in $M/G/q$ and $GI/M/1$ systems”, Math. Oper. Res., 13:2 (1988), 349–357 | DOI | MR | Zbl

[20] Temido M. G., Classes de leis limite em teoria de valores extremos — estabilidade e semiestabilidade, Ph.D. Thesis, University of Coimbra, Coimbra, 2000

[21] Temido M. G., “Domínios de atracção de funções de distribuição discretas”, Novos Rumos em Estatística, Proceedings of IX Congresso da Sociedade Portuguesa de Estatística. Portuguese Society of Statistics, 2002, 415–426

[22] Temido M. G., Canto e Castro L., “Max-semistable laws in extremes of stationary random sequences”, Teoriya veroyatn. i ee primen., 47:2 (2002), 402–410 | MR | Zbl