Local invariance principle for independent and identically distributed random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 333-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that for a sequence of independent and identically distributed random variables, the corresponding normalized step-processes converge weakly to the Wiener process. A stronger convergence, namely the convergence in variation of the functional distributions of these processes, has been established in [Y. A. Davydov, M. A. Lifshits, and N. V. Smorodina, Local Properties of Distributions of Stochastic Functionals, American Mathematical Society, Providence, RI, 1998] under the finiteness of the Fisher information of the random variables. In this paper we prove such convergences without a Fisher information type condition.
Keywords: invariance principles, local limit theorems.
Mots-clés : convergence in total variation
@article{TVP_2006_51_2_a4,
     author = {J.-Ch. Breton and Yu. A. Davydov},
     title = {Local invariance principle for independent and identically distributed random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {333--357},
     year = {2006},
     volume = {51},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a4/}
}
TY  - JOUR
AU  - J.-Ch. Breton
AU  - Yu. A. Davydov
TI  - Local invariance principle for independent and identically distributed random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 333
EP  - 357
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a4/
LA  - en
ID  - TVP_2006_51_2_a4
ER  - 
%0 Journal Article
%A J.-Ch. Breton
%A Yu. A. Davydov
%T Local invariance principle for independent and identically distributed random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 333-357
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a4/
%G en
%F TVP_2006_51_2_a4
J.-Ch. Breton; Yu. A. Davydov. Local invariance principle for independent and identically distributed random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 333-357. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a4/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[2] Davydov Yu. A., Lifshits M. A., “Metod rassloenii v nekotorykh veroyatnostnykh zadachakh”, Itogi nauki i tekhniki, ser. teoriya veroyatn., matem. statist., teoret. kibernet., 22, 1984, 61–157 | MR

[3] Davydov Yu. A., “O skhodimosti po variatsii obrazov odnomernykh mer”, Zapiski nauchn. sem. POMI, 194, 1992, 48–58 | MR

[4] Davydov Yu. A., Lifshits M. A., Smorodina N. V., Lokalnye svoistva raspredelenii stokhasticheskikh funktsionalov, Nauka, M., 1995, 255 pp. | MR

[5] Erdös P., Kac M., “On certain limit theorem in the theory of probability”, Bull. Amer. Math. Soc., 52 (1946), 292–302 | DOI | MR | Zbl

[6] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[7] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1988, 470 pp. | MR

[8] Tsirelson B. S., “Plotnost raspredeleniya maksimuma gaussovskogo protsessa”, Teoriya veroyatn. i ee primen., 20:4 (1975), 865–873 | MR