@article{TVP_2006_51_2_a3,
author = {M. S. Ermakov},
title = {Importance sampling for simulation of large and moderate deviation probabilities of tests and estimators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {319--332},
year = {2006},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a3/}
}
TY - JOUR AU - M. S. Ermakov TI - Importance sampling for simulation of large and moderate deviation probabilities of tests and estimators JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 319 EP - 332 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a3/ LA - ru ID - TVP_2006_51_2_a3 ER -
M. S. Ermakov. Importance sampling for simulation of large and moderate deviation probabilities of tests and estimators. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 319-332. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a3/
[1] Anderson T. W., Darling D. A., “Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes”, Ann. Math. Statist., 23 (1952), 193–212 | DOI | MR | Zbl
[2] Barone P., Gigli A., Piccioni M., “Optimal importance sampling for some quadratic forms of ARMA process”, part 2, IEEE Trans. Inform. Theory, 45:6 (1995), 1834–1844 | DOI | MR
[3] Borovkov A. A., Mogulskii A. A., “O veroyatnostyakh bolshikh uklonenii v topologicheskikh prostranstvakh. II”, Sib. matem. zhurn., 21:5 (1980), 12–26 | MR | Zbl
[4] Bucklew J. A., Large Deviations Techniques in Decision Simulation and Estimation, Wiley, New York, 1990, 270 pp. | MR
[5] Bucklew J. A., Ney P., Sadowsky J. S., “Monte Carlo simulation and large deviation theory for uniformly recurrent Markov chains”, J. Appl. Probab., 27:1 (1990), 44–59 | DOI | MR | Zbl
[6] Chen J.-C., Lu D., Sadowsky J. S., Yao K., “On importance sampling in digital communications. I: Fundamentals. II: Trellis coded modulation”, IEEE J. Selected Areas Commun., 11:3 (1993), 289–299 ; 300–308 | DOI
[7] Ermakov M. S., “Bolshie ukloneniya empiricheskikh mer i proverka gipotez”, Zapiski nauchn. semin. LOMI, 207, 1993, 37–59 | MR
[8] Ermakov M. S., “Asimptoticheskaya minimaksnost kriteriev tipa Kolmogorova i omega-kvadrat”, Teoriya veroyatn. i ee primen., 40:1 (1995), 54–67 | MR | Zbl
[9] Groeneboom P., Oosterhoff J., Ruymgaart F. H., “Large deviation theorems for empirical probability measures”, Ann. Probab., 7:4 (1979), 553–586 | DOI | MR | Zbl
[10] Hall P., The Bootstrap and Edgeworth Expansions, Springer-Verlag, New York, 1992, 352 pp. | MR
[11] Johns M., “Importance sampling for bootstrap confidence intervals”, J. Amer. Statist. Assoc., 83:403 (1988), 709–714 | DOI | MR | Zbl
[12] Lehtonen T., Nyrhinen H., “On asymptotically efficient simulation of ruin probabilities in a Markovian environment”, Scand. Actuar. J., 1 (1992), 60–75 | MR | Zbl
[13] Sadowsky J. S., “On Monte Carlo estimation of large deviations probabilities”, Ann. Appl. Probab., 6:2 (1996), 399–422 | DOI | MR | Zbl
[14] Sadowsky J. S., Bucklew J. A., “On large deviation theory and asymptotically efficient Monte Carlo estimation”, IEEE Trans. Inform. Theory, 36:3 (1990), 579–588 | DOI | MR | Zbl
[15] Siegmund D., “Importance sampling in the Monte Carlo study of sequential tests”, Ann. Statist., 4 (1976), 673–684 | DOI | MR | Zbl
[16] Srinivasan R., Importance Sampling. Applications in Communications and Detection, Springer-Verlag, Berlin, 2002 | MR