Importance sampling for simulation of large and moderate deviation probabilities of tests and estimators
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 319-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the machinery of large and moderate deviations theory of empirical probability measures, we study effective importance sampling for simulation of large and moderate deviation probabilities of tests and estimators. The computational burden of efficient importance sampling does not have the exponential growth as in the straightforward simulation. The results are implemented in a simulation of moderate deviation probabilities of tests of omega-squared type.
Keywords: importance sampling, large deviations, moderate deviations, empirical measure.
@article{TVP_2006_51_2_a3,
     author = {M. S. Ermakov},
     title = {Importance sampling for simulation of large and moderate deviation probabilities of tests and estimators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {319--332},
     year = {2006},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a3/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - Importance sampling for simulation of large and moderate deviation probabilities of tests and estimators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 319
EP  - 332
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a3/
LA  - ru
ID  - TVP_2006_51_2_a3
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T Importance sampling for simulation of large and moderate deviation probabilities of tests and estimators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 319-332
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a3/
%G ru
%F TVP_2006_51_2_a3
M. S. Ermakov. Importance sampling for simulation of large and moderate deviation probabilities of tests and estimators. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 319-332. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a3/

[1] Anderson T. W., Darling D. A., “Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes”, Ann. Math. Statist., 23 (1952), 193–212 | DOI | MR | Zbl

[2] Barone P., Gigli A., Piccioni M., “Optimal importance sampling for some quadratic forms of ARMA process”, part 2, IEEE Trans. Inform. Theory, 45:6 (1995), 1834–1844 | DOI | MR

[3] Borovkov A. A., Mogulskii A. A., “O veroyatnostyakh bolshikh uklonenii v topologicheskikh prostranstvakh. II”, Sib. matem. zhurn., 21:5 (1980), 12–26 | MR | Zbl

[4] Bucklew J. A., Large Deviations Techniques in Decision Simulation and Estimation, Wiley, New York, 1990, 270 pp. | MR

[5] Bucklew J. A., Ney P., Sadowsky J. S., “Monte Carlo simulation and large deviation theory for uniformly recurrent Markov chains”, J. Appl. Probab., 27:1 (1990), 44–59 | DOI | MR | Zbl

[6] Chen J.-C., Lu D., Sadowsky J. S., Yao K., “On importance sampling in digital communications. I: Fundamentals. II: Trellis coded modulation”, IEEE J. Selected Areas Commun., 11:3 (1993), 289–299 ; 300–308 | DOI

[7] Ermakov M. S., “Bolshie ukloneniya empiricheskikh mer i proverka gipotez”, Zapiski nauchn. semin. LOMI, 207, 1993, 37–59 | MR

[8] Ermakov M. S., “Asimptoticheskaya minimaksnost kriteriev tipa Kolmogorova i omega-kvadrat”, Teoriya veroyatn. i ee primen., 40:1 (1995), 54–67 | MR | Zbl

[9] Groeneboom P., Oosterhoff J., Ruymgaart F. H., “Large deviation theorems for empirical probability measures”, Ann. Probab., 7:4 (1979), 553–586 | DOI | MR | Zbl

[10] Hall P., The Bootstrap and Edgeworth Expansions, Springer-Verlag, New York, 1992, 352 pp. | MR

[11] Johns M., “Importance sampling for bootstrap confidence intervals”, J. Amer. Statist. Assoc., 83:403 (1988), 709–714 | DOI | MR | Zbl

[12] Lehtonen T., Nyrhinen H., “On asymptotically efficient simulation of ruin probabilities in a Markovian environment”, Scand. Actuar. J., 1 (1992), 60–75 | MR | Zbl

[13] Sadowsky J. S., “On Monte Carlo estimation of large deviations probabilities”, Ann. Appl. Probab., 6:2 (1996), 399–422 | DOI | MR | Zbl

[14] Sadowsky J. S., Bucklew J. A., “On large deviation theory and asymptotically efficient Monte Carlo estimation”, IEEE Trans. Inform. Theory, 36:3 (1990), 579–588 | DOI | MR | Zbl

[15] Siegmund D., “Importance sampling in the Monte Carlo study of sequential tests”, Ann. Statist., 4 (1976), 673–684 | DOI | MR | Zbl

[16] Srinivasan R., Importance Sampling. Applications in Communications and Detection, Springer-Verlag, Berlin, 2002 | MR