Mots-clés : irrational rotations
@article{TVP_2006_51_2_a14,
author = {M. Weber},
title = {On the {CLT} for means under the rotation {action.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {433--443},
year = {2006},
volume = {51},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a14/}
}
M. Weber. On the CLT for means under the rotation action. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 433-443. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a14/
[1] Berkes I., “On almost i.i.d. subsequences of the trigonometric system”, Lecture Notes in Math., 1332, 1988, 54–63 | MR | Zbl
[2] Bourgain J., “Pointwise ergodic theorems for arithmetic sets”, Inst. Hautes Études Sci. Publ. Math., no 69, 1989, 5–45 | MR
[3] Burton R., Denker M., “On the central limit theorem for dynamical systems”, Trans. Amer. Math. Soc., 302:2 (1987), 715–726 | DOI | MR | Zbl
[4] Denker M., “The central limit theorem for dynamical systems”, Banach Center Publ., 23 (1986), 33–62 | MR
[5] de la Rue T., Ladouceur S., Peskir G., Weber M., “On the central limit theorem for aperiodic dynamical systems and applications”, Teor. \u Imov\accent'26 ır. Mat. Stat., 57 (1997), 140–159 | MR | Zbl
[6] Giuliano Antonini R., Weber M., “The intersective ASCLT”, Stochastic Anal. Appl., 22:4 (2004), 1009–1025 | DOI | MR | Zbl
[7] Giuliano Antonini R., Weber M., “Counting occurrences in almost sure limit theorems”, Colloq. Math., 102:2 (2005), 271–290 | DOI | MR | Zbl
[8] Gordin M., Weber M., “On the almost sure central limit theorem for a class of $Z^d$-actions”, J. Theoret. Probab., 15:2 (2002), 477–501 | DOI | MR | Zbl
[9] Gordin M., Weber M., “A borderline Gaussian random Fourier series for the sampled convergence in variation”, J. Math. Anal. Appl., 318 (2006), 526–551 | DOI | MR | Zbl
[10] Kac M., “On the distribution of values of sums of the type $\sum f(2^kt)$”, Ann. Math., 47 (1946), 33–49 | DOI | MR | Zbl
[11] Kato Y., “Central limit theorem for Weyl automorphism”, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 34:3 (1987), 1–10 | MR
[12] Lacey M., “On central limit theorems, modulus of continuity and Diophantine type of irrational rotations”, J. Anal. Math., 61 (1993), 47–59 | DOI | MR | Zbl
[13] Lacey M., Philipp W., “A Note on the almost sure central limit theorem”, Statist. Probab. Lett., 9 (1990), 201–205 | DOI | MR | Zbl
[14] Ledoux M., Talagrand M., Probability in Banach Spaces, Springer-Verlag, 1990, 480 pp. | MR | Zbl
[15] Mitrinovic D. S., Analytic Inequalities, Springer-Verlag, New York–Berlin, 1970, 400 pp. | MR | Zbl
[16] Olevskii A. M., Fourier Series with Respect to General Orthogonal Systems, Springer-Verlag, New York–Heidelberg, 1975, 136 pp. | MR | Zbl
[17] Philipp W., Stout W., Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc., 161, no 2, 1975, 1–140 | MR | Zbl
[18] Salem R., Zygmund A., “On lacunary trigonometric series”, Proc. Natl. Acad. Sci. USA, 33 (1947), 333–338 | DOI | MR | Zbl
[19] Volný D., “Invariance principles and Gaussian approximation for strictly stationary processes”, Trans. Amer. Math. Soc., 351:8 (1999), 3351–3371 | DOI | MR | Zbl
[20] Weber M., “Un théorème central limite presque sûr à moments généralisés pour les rotations irrationnelles”, Manuscripta Math., 101:2 (2000), 175–190 | DOI | MR | Zbl
[21] Weber M., Entropie métrique et convergence presque partout, Hermann, Paris, 1998, 151 pp. | MR | Zbl