Some remarks on an interpolation problem of A.\,M.~Yaglom
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 425-433
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the problem of best mean-square interpolation of a continuous $q$-variate weakly stationary random process $\textbf x$ over $\mathbf R$ on the basis of the values $x_k$, $k\in\mathbf Z$, which was studied first by A. M. Yaglom [Uspehi Matem. Nauk (N.S.), 4 (1949), pp. 173–178] in the case $q=1$. For the family $\mathscr J_\mathbf{Z}$ of all subsets of $\mathbf R$ which are shifts of $\mathbf Z$, criterions of $\mathscr J_\mathbf Z$-singularity and $\mathscr J_\mathbf Z$-regularity in terms of the nonstochastic spectral measure of $\mathbf x$ are given. Related results for stationary sequences over $\mathbf Z$ are stated.
Keywords:
$q$-variate weakly stationary process, best mean-square interpolation, $\mathscr J$-regularity and $\mathscr J$-singularity, linear filtration.
@article{TVP_2006_51_2_a13,
author = {L. Klotz},
title = {Some remarks on an interpolation problem of {A.\,M.~Yaglom}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {425--433},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a13/}
}
L. Klotz. Some remarks on an interpolation problem of A.\,M.~Yaglom. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 425-433. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a13/