Stability of the nonlinear stochastic process approximizing a~system of interacted particles
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 400-409
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The nonlinear SDE of McKean–Vlasov type in the absence of external fields is considered. First, the existence and the uniqueness of the equation solution are proved. Next, the existence and the uniqueness of the stationary solution at the class of probability with fixed expectation are proved. Also, weak convergence to invariant probability is proved.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinear stochastic process, McKean–Vlasov equation, stability.
                    
                  
                
                
                @article{TVP_2006_51_2_a10,
     author = {P. N. Yarykin},
     title = {Stability of the nonlinear stochastic process approximizing a~system of interacted particles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {400--409},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a10/}
}
                      
                      
                    TY - JOUR AU - P. N. Yarykin TI - Stability of the nonlinear stochastic process approximizing a~system of interacted particles JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 400 EP - 409 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a10/ LA - ru ID - TVP_2006_51_2_a10 ER -
P. N. Yarykin. Stability of the nonlinear stochastic process approximizing a~system of interacted particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 400-409. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a10/
