Stability of the nonlinear stochastic process approximizing a system of interacted particles
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 400-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear SDE of McKean–Vlasov type in the absence of external fields is considered. First, the existence and the uniqueness of the equation solution are proved. Next, the existence and the uniqueness of the stationary solution at the class of probability with fixed expectation are proved. Also, weak convergence to invariant probability is proved.
Keywords: nonlinear stochastic process, McKean–Vlasov equation, stability.
@article{TVP_2006_51_2_a10,
     author = {P. N. Yarykin},
     title = {Stability of the nonlinear stochastic process approximizing a~system of interacted particles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {400--409},
     year = {2006},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a10/}
}
TY  - JOUR
AU  - P. N. Yarykin
TI  - Stability of the nonlinear stochastic process approximizing a system of interacted particles
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 400
EP  - 409
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a10/
LA  - ru
ID  - TVP_2006_51_2_a10
ER  - 
%0 Journal Article
%A P. N. Yarykin
%T Stability of the nonlinear stochastic process approximizing a system of interacted particles
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 400-409
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a10/
%G ru
%F TVP_2006_51_2_a10
P. N. Yarykin. Stability of the nonlinear stochastic process approximizing a system of interacted particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 400-409. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a10/

[1] McKean H. P. Jr., “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Natl. Acad. Sci. USA, 56 (1966), 1907–1911 | DOI | MR | Zbl

[2] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 367 pp. | MR

[3] Tamura Y., “On asymptotic behaviors of the solution of a nonlinear diffusion equation”, J. Fac. Sci. Univ. Tokyo, 31:1 (1984), 195–221 | MR | Zbl

[4] Tamura Y., “Free energy and the convergence of distributions of diffusion processes of McKean type”, J. Fac. Sci. Univ. Tokyo, 34:2 (1987), 443–484 | MR | Zbl

[5] Sznitman A.-S., Topics in propagation of chaos, Lecture Notes in Math., 1464, 1991, 165–251 | MR | Zbl

[6] Benachour S., Roynette B., Talay D., Vallois P., “Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos”, Stochastic Process. Appl., 75:2 (1998), 173–201 | DOI | MR | Zbl

[7] Benachour S., Roynette B., Vallois P., “Nonlinear self-stabilizing processes. II. Convergence to invariant probability”, Stochastic Process. Appl., 75:2 (1998), 203–224 | DOI | MR | Zbl

[8] Veretennikov A. Yu., “O polinomialnom peremeshivanii i skorosti skhodimosti dlya stokhasticheskikh differentsialnykh i raznostnykh uravnenii”, Teoriya veroyatn. i ee primen., 44:2 (1999), 312–327 | MR | Zbl

[9] Veretennikov A. Yu., On ergodic measures for McKean–Vlasov stochastic equations, Preprint NI03066, Isaac Newton Inst. for Math. Sci., Cambridge, 2003, 13 pp.; http://www.newton.cam.ac.uk/preprints/NI03066.pdf

[10] Yarykin P. N., “Povedenie stokhasticheskogo protsessa, opisyvayuschego sistemu chastits so vzaimodeistviem srednego polya”, Vestn. Mosk. un-ta, 2004, no. 2, 55–58 | MR