On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 260-294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotics of the probability that the sum of independent identically distributed random vectors is in a small cube with a vertex at point $x$ in the following two problems. (A) When the relative (normalized) deviations $x/n$ ($n$ is the number of terms in the sum) are in the analyticity domain of the large deviation rate function $\Lambda(\alpha)$ for the summands (if, in addition, $|x|/n\to\infty$, then one speaks of super-large deviations). (B) When the alternative possibility takes place, i.e., when $x/n$ is outside the analyticity domain of the function $\Lambda(\alpha)$. In problems (A) and (B) the asymptotics of the super-large deviation probabilities (when $|x/n|\to\infty$), just as the asymptotics of the probabilities of the “usual” large deviation in problem (B) (when $x/n$ is bounded away from the expectation of the summands and remains bounded), in many aspects remained unknown. The present paper, consisting of two parts, is mostly devoted to solving problem (A) for super-large deviations. In part I we present a solution to problem (A) in the general multivariate case. As the first step, we use the Cramér transform, which enables one to reduce the problem on super-large deviations of the original sum to that on normal deviations of the sum of the transformed random vectors. Then we use integrolocal or local theorems for sums of random vectors in the triangular array scheme in the normal deviations zone. The required versions of such theorems are contained in [A. A. Borovkov and A. A. Mogulskii, Math. Notes, 79 (2006), pp. 468–482] and in section 5. We also present in part I a scheme for solving problem (B), to which a separate paper will be devoted. In the case when the distribution of the sum is absolutely continuous in a neighborhood of the point $x$, we study the asymptotics of the respective density at that point.
Keywords: rate function, large deviations, super-large deviations, integrolocal theorem, triangular array scheme
Mots-clés : Cramér transform.
@article{TVP_2006_51_2_a1,
     author = {A. A. Borovkov and A. A. Mogul'skii},
     title = {On large and superlarge deviations for sums of independent random vectors under the {Cramer} {condition.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {260--294},
     year = {2006},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a1/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. A. Mogul'skii
TI  - On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 260
EP  - 294
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a1/
LA  - ru
ID  - TVP_2006_51_2_a1
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. A. Mogul'skii
%T On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 260-294
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a1/
%G ru
%F TVP_2006_51_2_a1
A. A. Borovkov; A. A. Mogul'skii. On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 260-294. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a1/

[1] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[2] Borovkov A. A., “Granichnye zadachi dlya sluchainykh bluzhdanii i bolshie ukloneniya v funktsionalnykh prostranstvakh”, Teoriya veroyatn. i ee primen., 12:4 (1967), 635–654 | MR | Zbl

[3] Borovkov A. A., Rogozin B. A., “O tsentralnoi predelnoi teoreme v mnogomernom sluchae”, Teoriya veroyatn. i ee primen., 10:1 (1965), 61–69 | MR | Zbl

[4] Borovkov A. A., Mogulskii A. A., Bolshie ukloneniya i proverka statisticheskikh gipotez, Nauka, Novosibirsk, 1992, 223 pp.

[5] Stone C., “On local and ratio limit theorems”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, V. II, Part 2 (Berkeley, 1965/66), Univ. California Press, Berkeley, 1966, 217–224 | MR

[6] Stone C., “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36 (1965), 546–551 | DOI | MR | Zbl

[7] Feller W. C., “On regular variation and local limit theorems”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, V. II, Part 1 (Berkeley, 1965/66), Univ. California Press, Berkeley, 1966, 373–388 | MR

[8] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I”, Teoriya veroyatn. i ee primen., 43:1 (1998), 3–17 | MR | Zbl

[9] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. II”, Teoriya veroyatn. i ee primen., 45:1 (2000), 5–29 | MR | Zbl

[10] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem i asimptoticheskie razlozheniya, Nauka, M., 1982, 286 pp. | MR

[11] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye teoremy dlya summ nezavisimykh sluchainykh vektorov v skheme serii”, Matem. zametki, 79:4 (2006), 505–521 | MR | Zbl

[12] Rozovskii L. V., “O sverkhbolshikh ukloneniyakh summy nezavisimykh sluchainykh velichin s obschim absolyutno nepreryvnym raspredeleniem udovletvoryayuschim usloviyu Kramera”, Teoriya veroyatn. i ee primen., 48:1 (2003), 78–103 | MR

[13] Daniels H. E., “Saddlepoint approximations in statistics”, Ann. Math. Statist., 25:4 (1954), 631–650 | DOI | MR | Zbl

[14] Nagaev A. V., “Bolshie ukloneniya dlya odnogo klassa raspredelenii”, Predelnye teoremy teorii veroyatnostei, Fan, Tashkent, 1963, 56–68

[15] Nagaev A. V., “Bolshie ukloneniya dlya odnogo klassa polozhitelnykh sluchainykh velichin”, Izv. AN UzSSR, 1963, no. 1, 18–20 | MR | Zbl

[16] Nagaev A. V., Khodzhabagyan S. S., “Predelnye teoremy, uchityvayuschie bolshie ukloneniya, dlya summ polozhitelnykh sluchainykh velichin”, Litov. matem. sb., 14:1 (1974), 149–163 | MR | Zbl

[17] Nagaev A. V., “Bolshie ukloneniya dlya summ reshetchatykh sluchainykh velichin pri vypolnenii usloviya Kramera”, Diskretn. matem., 10:3 (1998), 115–130 | MR | Zbl

[18] Nagaev A. V., “Lokalnye teoremy s uchetom bolshikh uklonenii”, Predelnye teoremy i veroyatnostnye protsessy, Fan, Tashkent, 1967, 71–88 | MR

[19] Nagaev A. V., “Predelnye teoremy dlya odnoi skhemy serii”, Predelnye teoremy i veroyatnostnye protsessy, Fan, Tashkent, 1967, 43–70 | MR

[20] Nagaev A. V., “Kramerovskie bolshie ukloneniya v sluchae, kogda krainee sopryazhennoe raspredelenie imeet tyazhelyi khvost”, Teoriya veroyatn. i ee primen., 43:3 (1998), 456–475 | MR | Zbl

[21] Borovkov A. A., Borovkov K. A., “O veroyatnostyakh bolshikh uklonenii dlya sluchainykh bluzhdanii. I. Raspredeleniya s pravilno izmenyayuschimisya khvostami”, Teoriya veroyatn. i ee primen., 46:2 (2001), 209–232 | MR | Zbl

[22] Zaigraev A. Yu., Nagaev A. V., “Abelevy teoremy, granichnye svoistva sopryazhennykh raspredelenii i bolshie ukloneniya summ nezavisimykh sluchainykh vektorov”, Teoriya veroyatn. i ee primen., 48:4 (2003), 701–719 | MR

[23] Borovkov A. A., “Integro-lokalnye i integralnye predelnye teoremy o bolshikh ukloneniyakh dlya summ sluchainykh vektorov. Regulyarnyi sluchai”, Cib. matem. zhurn., 43:3 (2002), 508–525 | MR | Zbl

[24] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp. | MR

[25] Borovkov A. A., Borovkov K. A., “O veroyatnostyakh bolshikh uklonenii dlya sluchainykh bluzhdanii. II. Regulyarnye eksponentsialno ubyvayuschie raspredeleniya”, Teoriya veroyatn. i ee primen., 49:2 (2004), 209–230 | MR | Zbl

[26] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967, 752 pp. | MR

[27] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS/Izd-vo IM SO RAN, M.–Novosibirsk, 1999, 470 pp. | MR

[28] Zaihraiev O., Large-deviation theorems for sums of independent and identically distributed random vectors, Uniwersytet Mikołaja Kopernika, Torun, 2005