@article{TVP_2006_51_1_a9,
author = {A. S. Holevo},
title = {Complementary channels and the additivity problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {133--143},
year = {2006},
volume = {51},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a9/}
}
A. S. Holevo. Complementary channels and the additivity problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a9/
[1] Amosov G. G., Kholevo A. S., Verner R. F., “O nekotorykh problemakh additivnosti v kvantovoi teorii informatsii”, Probl. peredachi inform., 36:4 (2000), 25–34 ; arxiv:math-ph/0003002 | MR | Zbl
[2] Kholevo A. S., Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002, 126 pp.
[3] Datta N., Multiplicativity of maximal $p$-norms in Werner–Holevo channels for $1\le p\le2$
[4] Datta N., Holevo A. S., Suhov Y. M., Additivity for transpose depolarizing channels
[5] Devetak I., Shor P. W., “The capacity of a quantum channel for simultaneous transmission of classical and quantum information”, Comm. Math. Phys., 256:2 (2005), 287–303 ; arXiv:quant-ph/0311131 | DOI | MR | Zbl
[6] Fukuda M., Extending additivity from symmetric to asymmetric channels, arXiv:quant-ph/0505022 | MR
[7] Holevo A. S., “A note on covariant dynamical semigroups”, Rep. Math. Phys., 32:2 (1993), 211–216 | DOI | MR | Zbl
[8] Holevo A. S., “On states, channels and purification”, Quantum Inf. Process., 1:1–2 (2002), 1–4 ; arXiv:quant-ph/0204077 | DOI | MR
[9] Holevo A. S., Shirokov M. E., “On Shor's channel extension and constrained channels”, Comm. Math. Phys., 249:2 (2004), 417–430 ; arXiv:quant-ph/0306196 | DOI | MR | Zbl
[10] Holevo A. S., Werner R. F., “Evaluating capacities of bosonic Gaussian channels”, Phys. Rev. A, 63:3 (2001), 032312 ; arXiv:quant-ph/9912067 | DOI
[11] Horodecki M., Shor P. W., Ruskai M. B., “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 ; arXiv:quant-ph/0302031 | DOI | MR | Zbl
[12] King C., An application of a matrix inequality in quantum information theory, arXiv:quant-ph/0412046
[13] King C., “Maximal $p$-norms of entanglement breaking channels”, Quantum Inf. Comput., 3:2 (2003), 186–190 ; arXiv:quant-ph/0212057 | MR | Zbl
[14] Matsumoto K., Yura F., “Entanglement cost of antisymmetric states and additivity of capacity of some quantum channels”, J. Phys. A, 37:15 (2004), L167–L171 ; arXiv:quant-ph/0306009 | DOI | MR | Zbl
[15] Nielsen M. A., Chuang I. L., Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000, 676 pp. | MR
[16] Shor P. W., “Additivity of the classical capacity of entanglement breaking quantum channels”, J. Math. Phys., 43:9 (2002), 4334–4340 ; arXiv:quant-ph/0201149 | DOI | MR | Zbl
[17] Shor P. W., “Equivalence of additivity questions in quantum information theory”, Comm. Math. Phys., 246:3 (2004), 453–472 ; arXiv:quant-ph/0305035 | DOI | MR | Zbl
[18] Werner R. F., Holevo A. S., “Counterexample to an additivity conjecture for output purity of quantum channels”, J. Math. Phys., 43:9 (2002), 4353–4357 ; arXiv:quant-ph/0203003 | DOI | MR | Zbl