Asymptotic behavior of a selfinteracting random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 126-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a simple one-dimensional random walk with the statistical weight of each sample path given by $\pi_t(\omega)=\exp\{-\beta\sum_{0\leq i$, where $\beta$ has the meaning of negative temperature, and $V$ is a nonnegative decreasing function with finite support. We show that for $\beta>\beta_0$ the distribution of $\omega_n$ is concentrated in the area $\{|\omega_n|>c\,n\}$, where $c=c(\beta)>0$, and for $\beta0$ every sample path becomes localized, in the sense that $\omega_n$ never leaves some fixed interval.
Keywords: potential, random walk, self-repulsive random walk, asymptotic behavior.
@article{TVP_2006_51_1_a8,
     author = {S. A. Nadtochii},
     title = {Asymptotic behavior of a selfinteracting random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {126--132},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/}
}
TY  - JOUR
AU  - S. A. Nadtochii
TI  - Asymptotic behavior of a selfinteracting random walk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 126
EP  - 132
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/
LA  - ru
ID  - TVP_2006_51_1_a8
ER  - 
%0 Journal Article
%A S. A. Nadtochii
%T Asymptotic behavior of a selfinteracting random walk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 126-132
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/
%G ru
%F TVP_2006_51_1_a8
S. A. Nadtochii. Asymptotic behavior of a selfinteracting random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 126-132. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/