@article{TVP_2006_51_1_a8,
author = {S. A. Nadtochii},
title = {Asymptotic behavior of a selfinteracting random walk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {126--132},
year = {2006},
volume = {51},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/}
}
S. A. Nadtochii. Asymptotic behavior of a selfinteracting random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 126-132. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/
[1] Amit D. J., Parisi G., Peliti L., “Asymptotic behaviour of the “true” self-avoiding walk”, Phys. Rev. B, 27:3 (1983), 1635–1645 | DOI | MR
[2] Coppersmith D., Diaconis P., Random walks with reinforcements, Preprint, Stanford University, 1987 | MR
[3] Davis B., “Reinforced random walk”, Probab. Theory Related Fields, 84:2 (1990), 203–229 | DOI | MR | Zbl
[4] Durrett R. T., Rogers L. C. G., “Asymptotic behaviour of Brownian polymers”, Probab. Theory Related Fields, 92:3 (1992), 337–349 | DOI | MR | Zbl
[5] Pelit L., Pietronero L., “Random walks with memory”, Riv. Nuovo Cimento, 10 (1987), 1–33 | MR
[6] Tóth B., “The “true” self-avoiding walk with bond repulsion on $\mathbf Z$: limit theorems”, Ann. Probab., 23:4 (1995), 1523–1556 | DOI | MR | Zbl
[7] Tóth B., ““True” self-avoiding walks with generalized bond repulsion on $\mathbf Z$”, J. Statist. Phys., 77:1–2 (1994), 17–33 | DOI | MR | Zbl
[8] Tóth B., “Generalized Ray–Knight theory and limit theorems for self-interacting random walks on $\mathbf Z^1$”, Ann. Probab., 24:3 (1996), 1324–1367 | DOI | MR | Zbl