Asymptotic behavior of a selfinteracting random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 126-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a simple one-dimensional random walk with the statistical weight of each sample path given by $\pi_t(\omega)=\exp\{-\beta\sum_{0\leq i, where $\beta$ has the meaning of negative temperature, and $V$ is a nonnegative decreasing function with finite support. We show that for $\beta>\beta_0$ the distribution of $\omega_n$ is concentrated in the area $\{|\omega_n|>c\,n\}$, where $c=c(\beta)>0$, and for $\beta<0$ every sample path becomes localized, in the sense that $\omega_n$ never leaves some fixed interval.
Keywords: potential, random walk, self-repulsive random walk, asymptotic behavior.
@article{TVP_2006_51_1_a8,
     author = {S. A. Nadtochii},
     title = {Asymptotic behavior of a selfinteracting random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {126--132},
     year = {2006},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/}
}
TY  - JOUR
AU  - S. A. Nadtochii
TI  - Asymptotic behavior of a selfinteracting random walk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 126
EP  - 132
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/
LA  - ru
ID  - TVP_2006_51_1_a8
ER  - 
%0 Journal Article
%A S. A. Nadtochii
%T Asymptotic behavior of a selfinteracting random walk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 126-132
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/
%G ru
%F TVP_2006_51_1_a8
S. A. Nadtochii. Asymptotic behavior of a selfinteracting random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 126-132. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a8/

[1] Amit D. J., Parisi G., Peliti L., “Asymptotic behaviour of the “true” self-avoiding walk”, Phys. Rev. B, 27:3 (1983), 1635–1645 | DOI | MR

[2] Coppersmith D., Diaconis P., Random walks with reinforcements, Preprint, Stanford University, 1987 | MR

[3] Davis B., “Reinforced random walk”, Probab. Theory Related Fields, 84:2 (1990), 203–229 | DOI | MR | Zbl

[4] Durrett R. T., Rogers L. C. G., “Asymptotic behaviour of Brownian polymers”, Probab. Theory Related Fields, 92:3 (1992), 337–349 | DOI | MR | Zbl

[5] Pelit L., Pietronero L., “Random walks with memory”, Riv. Nuovo Cimento, 10 (1987), 1–33 | MR

[6] Tóth B., “The “true” self-avoiding walk with bond repulsion on $\mathbf Z$: limit theorems”, Ann. Probab., 23:4 (1995), 1523–1556 | DOI | MR | Zbl

[7] Tóth B., ““True” self-avoiding walks with generalized bond repulsion on $\mathbf Z$”, J. Statist. Phys., 77:1–2 (1994), 17–33 | DOI | MR | Zbl

[8] Tóth B., “Generalized Ray–Knight theory and limit theorems for self-interacting random walks on $\mathbf Z^1$”, Ann. Probab., 24:3 (1996), 1324–1367 | DOI | MR | Zbl