Wigner function and diffusion in collisionfree media of quantum particles
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 109-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quantum Poincaré model (realizing behavior of ideal gas of noninteracting quantum Bolztman particles) is introduced. We use the fact that the evolution of the Wigner function corresponding to a quantum system with a quadratic Hamiltonian coincides with the evolution of a probability distribution on a phase space of the Hamiltonian system, the quantization of which gives the quantum system under consideration.
Mots-clés : Poincaré model
Keywords: Wigner function, Heisenberg equation, Hamiltonian equation, Weyl operator, Weyl function, ideal gas.
@article{TVP_2006_51_1_a7,
     author = {V. V. Kozlov and O. G. Smolyanov},
     title = {Wigner function and diffusion in collisionfree media of quantum particles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {109--125},
     year = {2006},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a7/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - O. G. Smolyanov
TI  - Wigner function and diffusion in collisionfree media of quantum particles
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 109
EP  - 125
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a7/
LA  - ru
ID  - TVP_2006_51_1_a7
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A O. G. Smolyanov
%T Wigner function and diffusion in collisionfree media of quantum particles
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 109-125
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a7/
%G ru
%F TVP_2006_51_1_a7
V. V. Kozlov; O. G. Smolyanov. Wigner function and diffusion in collisionfree media of quantum particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 109-125. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a7/

[1] Puankare A., “Zamechaniya o kineticheskoi teorii gazov”, Izbrannye trudy, t. 3, Nauka, M., 1974, 385–412

[2] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI

[3] Kozlov V. V., Teplovoe ravnovesie po Gibbsu i Puankare, In-t kompyuter. issled., M.–Izhevsk, 2002, 319 pp. | MR | Zbl

[4] Kozlov V. V., “Notes on diffusion in collisionless medium”, Regul. Chaotic Dyn., 9:1 (2004), 29–34 | DOI | MR | Zbl

[5] D. F. Walls, G. J. Milburn, Quantum Optics, Springer-Verlag, Berlin, 1994, 351 pp. | MR | Zbl

[6] Folland G. B., Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, 1989, 277 pp. | MR | Zbl

[7] Landau L. D., Lifshits E. M., Statisticheskaya fizika, ch. 1, Nauka, M., 1976, 583 pp. | MR

[8] Kim Y. S., Noz M. E., Phase-Space Picture of Quantum Mechanics. Group Theoretical Approach, World Scientific, River Edge, 1991, 334 pp. | MR

[9] Lee H. W., “Spreading of a free wave packet”, Amer. J. Phys., 50:5 (1982), 438–440 | DOI

[10] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl

[11] Bogolyubov N. N., Bogolyubov N. N. ml., Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984, 384 pp. | MR

[12] Dirak P. A. M., Printsipy kvantovoi mekhaniki, Nauka, M., 1979, 480 pp. | MR