On censored sample estimation of a multivariate analytic probability density
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 95-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of estimating an unknown probability density $f(x)$ by a $d$-dimensional sample $X_1,\dots,X_n$, $X_j\inR^d$, is studied, observing only those sample elements which fall into the given bounded domain $G\subsetR^d$.
Keywords: probability density, nonparametric estimators, analytic functions, projective estimators.
@article{TVP_2006_51_1_a6,
     author = {I. A. Ibragimov},
     title = {On censored sample estimation of a~multivariate analytic probability density},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {95--108},
     year = {2006},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a6/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - On censored sample estimation of a multivariate analytic probability density
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 95
EP  - 108
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a6/
LA  - ru
ID  - TVP_2006_51_1_a6
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T On censored sample estimation of a multivariate analytic probability density
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 95-108
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a6/
%G ru
%F TVP_2006_51_1_a6
I. A. Ibragimov. On censored sample estimation of a multivariate analytic probability density. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a6/

[1] Bernshtein S. N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii veschestvennoi peremennoi, ONTI, M.-L., 1937, 203 pp.

[2] Gallager R., Teoriya informatsii i nadezhnaya svyaz, Sovetskoe radio, M., 1974, 720 pp. | Zbl

[3] Gelfand I. M., Yaglom A. M., “O vychislenii kolichestva informatsii o sluchainoi funktsii, soderzhascheisya v drugoi takoi funktsii”, Uspekhi matem. nauk, 12:1(73) (1957), 3–52 | MR

[4] Ibragimov I. A., “Ob otsenivanii analiticheskoi plotnosti raspredeleniya po tsenzurirovannoi vyborke”, Zap. nauchn. seminarov LOMI, 311, 2004, 147–160 | Zbl

[5] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 527 pp. | MR

[6] Ibragimov I. A., Khasminskii R. Z., “Ob otsenke plotnosti raspredeleniya”, Zap. nauchn. seminarov LOMI, 98, 1980, 61–85 | MR | Zbl

[7] Ibragimov I. A., Khasminskii R. Z., “Ob otsenke plotnosti raspredeleniya, prinadlezhaschei odnomu klassu tselykh funktsii”, Teoriya veroyatn. i ee primen., 27:3 (1982), 514–524 | MR | Zbl

[8] Ibragimov I. A., “Ob ekstrapolyatsii tselykh funktsii nablyudaemykh v gaussovskom belom shume”, Ukr. matem. zhurnal, 21:3 (2000), 58–69

[9] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.

[10] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[11] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 331 pp. | Zbl

[12] Hasminskii R., Ibragimov I., “On density estimation in the view of Kolmogorov's ideas in approximation theory”, Ann. Statist., 18:3 (1990), 999–1010 | DOI | MR

[13] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968, 279 pp. | MR

[14] Chentsov N. N., “Otsenka neizvestnoi plotnosti raspredeleniya po nablyudeniyam”, Dokl. AN SSSR, 147:1 (1962), 45–48 | MR | Zbl