Multifractal analysis of time averages for continuous vector functions on configuration space
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 78-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a natural action $\tau$ of the group $Z^d$ on the space $X$ consisting of the functions $x\colonZ^d\to S$ ($S$-valued configurations on $Z^d$), where $S$ is a finite set. For an arbitrary continuous function $f\colon X\toR^m$, we study the multifractal spectrum of its time means corresponding to the dynamical system $\tau$ and a proper “averaging” sequence of finite subsets of the lattice $Z^d$. The main tool of the research is thermodynamic formalism.
Mots-clés : Hausdorff dimension
Keywords: cylinder dimension, invariant measure, Gibbs random field, space mean, time mean, multifractal spectrum.
@article{TVP_2006_51_1_a5,
     author = {B. M. Gurevich and A. A. Tempel'man},
     title = {Multifractal analysis of time averages for continuous vector functions on configuration space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {78--94},
     year = {2006},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a5/}
}
TY  - JOUR
AU  - B. M. Gurevich
AU  - A. A. Tempel'man
TI  - Multifractal analysis of time averages for continuous vector functions on configuration space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 78
EP  - 94
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a5/
LA  - ru
ID  - TVP_2006_51_1_a5
ER  - 
%0 Journal Article
%A B. M. Gurevich
%A A. A. Tempel'man
%T Multifractal analysis of time averages for continuous vector functions on configuration space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 78-94
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a5/
%G ru
%F TVP_2006_51_1_a5
B. M. Gurevich; A. A. Tempel'man. Multifractal analysis of time averages for continuous vector functions on configuration space. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 78-94. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a5/

[1] Barreira L., Saussol B., Schmeling J., “Higher-dimensional multifractal analysis”, J. Math. Pures Appl., 81:1 (2002), 67–91 | DOI | MR | Zbl

[2] Besicovitch A. S., “On the sum of digits of real numbers represented in the dyadic system”, Math. Ann., 110 (1934), 321–330 | DOI | MR

[3] Billingsley P., “Hausdorff dimension in probability theory”, Illinois J. Math., 4 (1960), 187–209 | MR | Zbl

[4] Billingslei P., Ergodicheskaya teoriya i informatsiya, Mir, M., 1969, 238 pp. | MR

[5] Cajar H., “Billingsley dimension in probability spaces”, Lecture Notes in Math., 892, 1981, 1–106 | MR

[6] Colebrook C. M., “The Hausdorff dimension of certain sets of nonnormal numbers”, Michigan Math. J., 17 (1970), 103–106 | DOI | MR

[7] Eggleston H. G., “The fractional dimension of a set defined by decimal properties”, Quart. J. Math. Oxford Ser., 20 (1949), 31–36 | DOI | MR | Zbl

[8] Fan A.-H., Feng D.-J., “On the distribution of long-term time averages on symbolic space”, J. Statist. Phys., 99:3–4 (2000), 813–856 | DOI | MR | Zbl

[9] Georgi Kh.-O., Gibbsovskie mery i fazovye perekhody, Mir, M., 1992, 624 pp. | MR

[10] Gurevich B. M., Tempelman A. A., “Hausdorff dimension and pressure in the DLR thermodynamic formalism”, On Dobrushin's Way. From Probability Theory to Statistical Physics, Amer. Math. Soc., Providence, RI, 2000, 91–107 | MR | Zbl

[11] Gurevich B. M., Tempelman A. A., “Hausdorff dimension of sets of generic points for Gibbs measures”, J. Statist. Phys., 108:5–6 (2002), 1281–1301 | DOI | MR | Zbl

[12] Gurevich B. M., Tempelman A. A., “O mnozhestvakh vremennykh i prostranstvennykh srednikh dlya nepreryvnykh funktsii na prostranstve konfiguratsii”, Uspekhi matem. nauk, 58:2(350) (2003), 161–162 | MR | Zbl

[13] Gurevich B. M., Tempelman A. A., “Markov approximation of homogeneous lattice random fields”, Probab. Theory Related Fields, 131:4 (2005), 519–527 | DOI | MR | Zbl

[14] Gurevich B. M., Tempelman A. A., “A Breiman type theorem for Gibbs measures”, J. Dynam. Control Systems (to appear)

[15] Gurevich B. M., Tempelman A. A., “Three types of means for continuous vector functions on the phase space of a dynamical system”, Trans. Amer. Math. Soc. (to appear)

[16] Khuang K., Statisticheskaya mekhanika, Mir, M., 1966, 520 pp.

[17] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Nauka, M., 1964, 568 pp. | Zbl

[18] Klimontovich Yu. L., Statisticheskaya fizika, Nauka, M., 1982, 608 pp.

[19] Olivier E., “Analyse multifractale de fonctions continues”, C. R. Acad. Sci. Paris, 326:10 (1998), 1171–1174 | MR | Zbl

[20] Olivier E., “Dimension de Billingsley d'ensembles saturés”, C. R. Acad. Sci. Paris, 328:1 (1999), 13–16 | MR | Zbl

[21] Olivier E., “Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for $g$-measures”, Nonlinearity, 12:6 (1999), 1571–1585 | DOI | MR | Zbl

[22] Olsen L., Winter S., Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. II, Preprint, University of St Andrews, 2001

[23] Pesin Ya. B., Teoriya razmernosti i dinamicheskie sistemy., In-t kompyut. issled., M.–Izhevsk, 2002, 403 pp.

[24] Pesin Ya., Weiss H., “The multifractal analysis of Birkhoff averages and large deviations”, Global Analysis of Dynamical Systems, Inst. Phys., Bristol, 2001, 419–431 | MR | Zbl

[25] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[26] Ryuel D., Termodinamicheskii formalizm, In-t kompyut. issled., M.–Izhevsk, 2002, 288 pp.

[27] Sigmund K., “On dynamical systems with the specification property”, Trans. Amer. Math. Soc., 190 (1974), 285–299 | DOI | MR | Zbl

[28] Sinai Ya. G., “Gibbsovskie mery v ergodicheskoi teorii”, Uspekhi matem. nauk, 27:4 (1972), 21–64 | MR | Zbl

[29] Takens F., Verbitski E., “Multifractal analysis of local entropies for expansive homeomorphisms with specification”, Comm. Math. Phys., 203:3 (1999), 593–612 | DOI | MR | Zbl

[30] Takens F., Verbitski E., “On the variational principle for the topological entropy of certain non-compact sets”, Ergodic Theory Dynam. Systems, 23:1 (2003), 317–348 | DOI | MR | Zbl

[31] Tempelman A. A., “Razmernost sluchainykh posledovatelnostei i sluchainykh fraktalov v metricheskikh prostranstvakh”, Teoriya veroyatn. i ee primen., 44:3 (1999), 589–616 | MR

[32] Tempelman A. A., “Multifractal analysis of ergodic averages: a generalization of Eggleston's theorem”, J. Dynam. Control Systems, 7:4 (2001), 535–551 | DOI | MR | Zbl

[33] Tempelman A., Ergodic Theorems for Group Actions, Kluwer, Dordrecht, 1992, 399 pp. | MR

[34] Volkmann B., “Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. VI”, Math. Z., 68 (1958), 439–449 | DOI | MR | Zbl