On the problem of stochastic integral representations of functionals of the Browning motion. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 64-77
Cet article a éte moissonné depuis la source Math-Net.Ru
In the first part of this paper [A. N. Shiryaev and M. Yor, Theory Probab. Appl., 48 (2004), pp. 304–313], a method of obtaining stochastic integral representations of functionals $S(\omega)$ of Brownian motion $B=(B_t)_{t\ge 0}$ was stated. Functionals $\max_{t\le T}B_t$ and $\max_{t\le T_{-a}}B_t$, where $T_{-a}=\inf\{t: B_t=-a\}$, $a>0$, were considered as an illustration. In the present paper we state another derivation of representations for these functionals and two proofs of representation for functional $\max_{t\le g_T}B_t$, where (non-Markov time) $g_T=\sup\{0\le t\le T:B_t=0\}$ are given.
Keywords:
Brownian motion, max-functionals, stochastic integral representation.
Mots-clés : Itô integral
Mots-clés : Itô integral
@article{TVP_2006_51_1_a4,
author = {S. Graversen and A. N. Shiryaev and M. Yor},
title = {On the problem of stochastic integral representations of functionals of the {Browning} {motion.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {64--77},
year = {2006},
volume = {51},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a4/}
}
TY - JOUR AU - S. Graversen AU - A. N. Shiryaev AU - M. Yor TI - On the problem of stochastic integral representations of functionals of the Browning motion. II JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 64 EP - 77 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a4/ LA - ru ID - TVP_2006_51_1_a4 ER -
%0 Journal Article %A S. Graversen %A A. N. Shiryaev %A M. Yor %T On the problem of stochastic integral representations of functionals of the Browning motion. II %J Teoriâ veroâtnostej i ee primeneniâ %D 2006 %P 64-77 %V 51 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a4/ %G ru %F TVP_2006_51_1_a4
S. Graversen; A. N. Shiryaev; M. Yor. On the problem of stochastic integral representations of functionals of the Browning motion. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a4/
[1] Shiryaev A. N., Ior M., “K voprosu o stokhasticheskikh integralnykh predstavleniyakh funktsionalov ot brounovskogo dvizheniya. I”, Teoriya veroyatn. i ee primen., 48:2 (2003), 375–385 | MR | Zbl
[2] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.
[3] Seshadri V., “Exponential models, Brownian motion, and independence”, Canad. J. Statist., 16:3 (1988), 209–221 | DOI | MR | Zbl