Markov measures on Young tableaux and induced representations of an infinite symmetric group
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 47-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the class of so-called Markov representations of the infinite symmetric group $\mathfrak{S}_{N}$, associated with Markov measures on the space of infinite Young tableaux, coincides with the class of simple representations, i.e., inductive limits of representations with simple spectrum. The spectral measure of an arbitrary representation of $\mathfrak{S}_{N}$ with simple spectrum is equivalent to a multi-Markov measure on the space of Young tableaux. We also show that the representations of $\mathfrak{S}_{N}$ induced from the identity representations of two-block Young subgroups are Markov and find explicit formulas for the transition probabilities of the corresponding Markov measures. The induced representations are studied with the help of the tensor model of two-row representations of the symmetric groups; in particular, we deduce explicit formulas for the Gelfand–Tsetlin basis in the tensor models.
Keywords: Markov measures, induced representations, simple spectrum.
Mots-clés : Young tableaux
@article{TVP_2006_51_1_a3,
     author = {A. M. Vershik and N. V. Tsilevich},
     title = {Markov measures on {Young} tableaux and induced representations of an infinite symmetric group},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {47--63},
     year = {2006},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a3/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - N. V. Tsilevich
TI  - Markov measures on Young tableaux and induced representations of an infinite symmetric group
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 47
EP  - 63
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a3/
LA  - ru
ID  - TVP_2006_51_1_a3
ER  - 
%0 Journal Article
%A A. M. Vershik
%A N. V. Tsilevich
%T Markov measures on Young tableaux and induced representations of an infinite symmetric group
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 47-63
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a3/
%G ru
%F TVP_2006_51_1_a3
A. M. Vershik; N. V. Tsilevich. Markov measures on Young tableaux and induced representations of an infinite symmetric group. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a3/

[1] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982, 214 pp. | MR

[2] James G., Kerber A., The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, Mass., 1981, 510 pp. | MR

[3] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985, 222 pp. | MR

[4] Nikitin P. P., “Realizatsiya neprivodimykh dvustrochechnykh predstavlenii $S_n$ v beskvadratnykh simmetricheskikh formakh”, Zap. nauchn. semin. POMI, 301, 2003, 212–218 | MR

[5] Tsilevich N. V., Vershik A. M., “On different models of representations of the infinite symmetric group”, Adv. Appl. Math., 2006 (to appear) | MR

[6] Vershik A. M., “Ustroistvo ruchnykh razbienii”, Uspekhi matem. nauk, 27:3 (1972), 195–196 | MR | Zbl

[7] Vershik A. M., “Randomization of algebra and algebraization of probability — an attempt at prediction”, Mathematics Unlimited — 2001 and Beyond, Part II, Springer-Verlag, Berlin, 2001, 1157–1166 | MR | Zbl

[8] Vershik A. M., Kerov S. V., “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki, ser. sovr. problemy matem., noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR

[9] Vershik A. M., Kerov S. V., “The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of $K_0$-functor of AF-algebras)”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, eds. A. M. Vershik and D. P. Zhelobenko, Gordon and Breach, New York, 1990, 39–117 | MR

[10] Vershik A. M., Okunkov A. Yu., “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp. II”, Zap. nauchn. semin. POMI, 307, 2004, 57–98 | MR