Branching processes in random environment and “bottlenecks” in evolution of populations
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 22-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A branching process $Z(n)$, $n=0,1\dots$ is considered which evolves in a random environment generated by a sequence of independent identically distributed generating functions $f_0(s),f_1(s),\dots$ . Let $S_0=0$, $S_0=0$, $S_k=\log f'_0(1)+\dots+\log f'_{k-1}(1)$, $k\ge 1$, be the associated random walk and let $\tau (n)$ be the leftmost point of minimum of $\{S_k\}_{k\ge 0}$ on the interval $[0,n]$. Assuming that the random walk satisfies the Spitzer condition $n^{-1}\sum_{k=1}^{n}P\{S_k>0\}\to\rho\in(0,1)$, $n\to\infty$, we show (under the quenched approach) that for each fixed $t\in (0,1]$ and $m=0,\pm 1,\pm 2\dots$ the distribution of $Z(\tau(nt)+m)$ given $Z(n)>0$ converges as $n\to\infty $ to a (random) discrete distribution. Thus, in contrast to fixed points of the form $nt$, where the size of the population is large (even exponentially large, see [V. A. Vatutin and E. E. Dyakonova, Theory Probab. Appl., 49 (2005), pp. 275–308]), the size of the population at (random) points of sequential minima of the associated random walk becomes drastically small and, therefore, the branching process passes through a number of bottlenecks at such moments. As a corollary of our results we find (under the quenched approach) the distribution of the local time of the first excursion of a simple random walk in a random environment, provided this excursion attains a high level.
Keywords: branching processes in a random environment, Spitzer condition, conditional limit theorems, change of measure, random walk in a random environment, local time.
@article{TVP_2006_51_1_a2,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Branching processes in random environment and {\textquotedblleft}bottlenecks{\textquotedblright} in evolution of populations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {22--46},
     year = {2006},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Branching processes in random environment and “bottlenecks” in evolution of populations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 22
EP  - 46
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a2/
LA  - ru
ID  - TVP_2006_51_1_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Branching processes in random environment and “bottlenecks” in evolution of populations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 22-46
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a2/
%G ru
%F TVP_2006_51_1_a2
V. A. Vatutin; E. E. D'yakonova. Branching processes in random environment and “bottlenecks” in evolution of populations. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 22-46. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a2/

[1] Albeverio S., Kozlov M. V., “O vozvratnosti i tranzientnosti zavisyaschikh ot sostoyaniya vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 48:4 (2003), 641–660 | MR | Zbl

[2] Athreya K. B., Karlin S., “On branching processes with random environments. I. Extinction probabilities”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl

[3] Athreya K. B., Karlin S., “On branching processes with random environments. II. Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843–1858 | DOI | MR | Zbl

[4] Athreya K. B., Ney P. E., Branching Processes, Springer-Verlag, New York–Heidelberg, 1972, 287 pp. | MR | Zbl

[5] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[6] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676 | DOI | MR | Zbl

[7] Vatutin V. A., Zubkov A. M., “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl

[8] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science. II: Algorithms, Trees, Combinatorics and Probabilities., eds. B. Chauvin et al., Birkhäuser, Basel, 2002, 455–467 | MR | Zbl

[9] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: predelnye teoremy”, Teoriya veroyatn. i ee. primen., 48:2 (2003), 274–300 | MR | Zbl

[10] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. II: konechnomernye raspredeleniya”, Teoriya veroyatn. i ee. primen., 49:2 (2004), 231–268 | MR | Zbl

[11] Vatutin V. A., Dyakonova E. E., “Yaglom type limit theorem for branching processes in random environment”, Mathematics and Computer Science. III: Algorithms, Trees, Combinatorics and Probabilities, eds. M. Drmota et al., Birkhäuser, Basel, 2004, 375–385 | MR | Zbl

[12] Deheuvels P., Révész P., “Simple random walk on the line in random environment”, Probab. Theory Related Fields, 72:2 (1986), 215–230 | DOI | MR | Zbl

[13] Dyakonova E. E., Geiger J., Vatutin V. A., “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306 | MR | Zbl

[14] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl

[15] Gillespie J. H., The Causes of Molecular Evolution, Oxford Univ. Press, Oxford, 1991, 352 pp.

[16] Haccou P., Jagers P., Vatutin V. A., Branching Processes: Variation, Growth, and Extinction of Populations, Cambridge Univ. Press, Cambridge, 2005, 320 pp. | Zbl

[17] Harris T. E., “First passage and recurrence distributions”, Trans. Amer. Math. Soc., 73 (1952), 471–486 | DOI | MR | Zbl

[18] Kozlov M. V., “Uslovnaya predelnaya teorema kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Dokl. RAN, 344:1 (1995), 12–15 | MR | Zbl

[19] Sinai Ya. G., “Predelnoe povedenie odnomernogo sluchainogo bluzhdaniya v sluchainoi srede”, Teoriya veroyatn. i ee primen., 27:2 (1982), 247–258 | MR

[20] Smith W. L., Wilkinson W. E., “On branching processes in random environments”, Ann. Math. Statist., 40 (1969), 814–827 | DOI | MR | Zbl

[21] Solomon F., “Random walk in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl

[22] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.

[23] Tarjan R. E., “Depth-first search and linear graph algorithm”, SIAM J. Comput., 1:2 (1972), 146–160 | DOI | MR | Zbl

[24] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984, 752 pp. | MR