Branching processes in random environment and ``bottlenecks'' in evolution of populations
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 22-46

Voir la notice de l'article provenant de la source Math-Net.Ru

A branching process $Z(n)$, $n=0,1\dots$ is considered which evolves in a random environment generated by a sequence of independent identically distributed generating functions $f_0(s),f_1(s),\dots$ . Let $S_0=0$, $S_0=0$, $S_k=\log f'_0(1)+\dots+\log f'_{k-1}(1)$, $k\ge 1$, be the associated random walk and let $\tau (n)$ be the leftmost point of minimum of $\{S_k\}_{k\ge 0}$ on the interval $[0,n]$. Assuming that the random walk satisfies the Spitzer condition $n^{-1}\sum_{k=1}^{n}P\{S_k>0\}\to\rho\in(0,1)$, $n\to\infty$, we show (under the quenched approach) that for each fixed $t\in (0,1]$ and $m=0,\pm 1,\pm 2\dots$ the distribution of $Z(\tau(nt)+m)$ given $Z(n)>0$ converges as $n\to\infty $ to a (random) discrete distribution. Thus, in contrast to fixed points of the form $nt$, where the size of the population is large (even exponentially large, see [V. A. Vatutin and E. E. Dyakonova, Theory Probab. Appl., 49 (2005), pp. 275–308]), the size of the population at (random) points of sequential minima of the associated random walk becomes drastically small and, therefore, the branching process passes through a number of bottlenecks at such moments. As a corollary of our results we find (under the quenched approach) the distribution of the local time of the first excursion of a simple random walk in a random environment, provided this excursion attains a high level.
Keywords: branching processes in a random environment, Spitzer condition, conditional limit theorems, change of measure, random walk in a random environment, local time.
@article{TVP_2006_51_1_a2,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Branching processes in random environment and ``bottlenecks'' in evolution of populations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {22--46},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Branching processes in random environment and ``bottlenecks'' in evolution of populations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 22
EP  - 46
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a2/
LA  - ru
ID  - TVP_2006_51_1_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Branching processes in random environment and ``bottlenecks'' in evolution of populations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 22-46
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a2/
%G ru
%F TVP_2006_51_1_a2
V. A. Vatutin; E. E. D'yakonova. Branching processes in random environment and ``bottlenecks'' in evolution of populations. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 22-46. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a2/