Mots-clés : Hausdorff dimension, equidistant projection, Sturm–Liouville equation
@article{TVP_2006_51_1_a13,
author = {M. Ya. Kelbert and Yu. M. Sukhov},
title = {Branching diffusions on $H^d$ with variable fission: {The} {Hausdorff} dimension of the limiting set},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {241--255},
year = {2006},
volume = {51},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a13/}
}
TY - JOUR AU - M. Ya. Kelbert AU - Yu. M. Sukhov TI - Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 241 EP - 255 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a13/ LA - en ID - TVP_2006_51_1_a13 ER -
%0 Journal Article %A M. Ya. Kelbert %A Yu. M. Sukhov %T Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set %J Teoriâ veroâtnostej i ee primeneniâ %D 2006 %P 241-255 %V 51 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a13/ %G en %F TVP_2006_51_1_a13
M. Ya. Kelbert; Yu. M. Sukhov. Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 241-255. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a13/
[1] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, SPb., 2000, 639 pp. | Zbl
[2] Falconer K. J., Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 1990, 288 pp. | MR | Zbl
[3] Grigor'yan A., Kelbert M., “Recurrence and transience of branching diffusion processes on Riemannian manifolds”, Ann. Probab., 31:1 (2003), 244–284 | DOI | MR
[4] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, Fizmatgiz, M., 1962, 656 pp.
[5] Harish-Chandra, “Spherical functions on a semisimple Lie group”, Amer. J. Math., 80 (1958), 241–310 | DOI | MR | Zbl
[6] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964, 533 pp.
[7] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York–London, 1978, 628 pp. | MR | Zbl
[8] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 394 pp. | Zbl
[9] Karpelevich F. I., “Geometriya geodezicheskikh i sobstvennykh funktsii operatora Beltrami–Laplasa na simmetricheskikh prostranstvakh”, Trudy Mosk. matem. ob-va, 44, 1965, 48–185
[10] Karpelevich F. I., Kelbert M. Ya., Suhov Yu. M., “The boundedness of branching Markov processes”, The Dynkin Festschrift. Markov Processes and Their Applications, Progr. Probab., 34, ed. M. Freidlin, Birkhäuser, Boston, 1994, 143–152 | MR | Zbl
[11] Karpelevich F. I., Pechersky E. A., Suhov Yu. M., “A phase transition for hyperbolic branching processes”, Comm. Math. Phys., 195:3 (1998), 627–642 | DOI | MR | Zbl
[12] Karpelevich F. I., Suhov Yu. M., “A criterion of boundedness of discrete branching random walk”, Classical and Modern Branching Processes, IMA Vol. Math. Appl., 84, eds. K. B. Athreya and P. Jagers, Springer-Verlag, New York, 1997, 141–155 | MR | Zbl
[13] Karpelevich F. I., Suhov Yu.M., “Boundedness of one-dimensional branching Markov processes”, J. Appl. Math. Stochastic Anal., 10:4 (1997), 307–332 | DOI | MR | Zbl
[14] Lalley S., Sellke T., “Hyperbolic branching Brownian motion”, Probab. Theory Relat. Fields, 108:2 (1997), 171–192 | DOI | MR | Zbl