Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 241-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper extends results of previous papers [S. Lalley and T. Sellke, Probab. Theory Related Fields, 108 (1997), pp. 171–192] and [F. I. Karpelevich, E. A. Pechersky, and Yu. M. Suhov, Comm. Math. Phys., 195 (1998), pp. 627–642] on the Hausdorff dimension of the limiting set of a homogeneous hyperbolic branching diffusion to the case of a variable fission mechanism. More precisely, we consider a nonhomogeneous branching diffusion on a Lobachevsky space $H^d$ and assume that parameters of the process uniformly approach their limiting values at the absolute $\partialH^d$. Under these assumptions, a formula is established for the Hausdorff dimension $h(\Lambda)$ of the limiting (random) set $\Lambda\subseteq\partialH^d$, which agrees with formulas obtained in the papers cited above for the homogeneous case. The method is based on properties of the minimal solution to a Sturm–Liouville equation, with a potential taking two values, and elements of the harmonic analysis on $H^d$.
Keywords: Lobachevsky space, branching diffusion, limiting set, horospheric projection, minimal positive solution.
Mots-clés : Hausdorff dimension, equidistant projection, Sturm–Liouville equation
@article{TVP_2006_51_1_a13,
     author = {M. Ya. Kelbert and Yu. M. Sukhov},
     title = {Branching diffusions on $H^d$ with variable fission: {The} {Hausdorff} dimension of the limiting set},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {241--255},
     year = {2006},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a13/}
}
TY  - JOUR
AU  - M. Ya. Kelbert
AU  - Yu. M. Sukhov
TI  - Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 241
EP  - 255
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a13/
LA  - en
ID  - TVP_2006_51_1_a13
ER  - 
%0 Journal Article
%A M. Ya. Kelbert
%A Yu. M. Sukhov
%T Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 241-255
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a13/
%G en
%F TVP_2006_51_1_a13
M. Ya. Kelbert; Yu. M. Sukhov. Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 241-255. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a13/

[1] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, SPb., 2000, 639 pp. | Zbl

[2] Falconer K. J., Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 1990, 288 pp. | MR | Zbl

[3] Grigor'yan A., Kelbert M., “Recurrence and transience of branching diffusion processes on Riemannian manifolds”, Ann. Probab., 31:1 (2003), 244–284 | DOI | MR

[4] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, Fizmatgiz, M., 1962, 656 pp.

[5] Harish-Chandra, “Spherical functions on a semisimple Lie group”, Amer. J. Math., 80 (1958), 241–310 | DOI | MR | Zbl

[6] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964, 533 pp.

[7] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York–London, 1978, 628 pp. | MR | Zbl

[8] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 394 pp. | Zbl

[9] Karpelevich F. I., “Geometriya geodezicheskikh i sobstvennykh funktsii operatora Beltrami–Laplasa na simmetricheskikh prostranstvakh”, Trudy Mosk. matem. ob-va, 44, 1965, 48–185

[10] Karpelevich F. I., Kelbert M. Ya., Suhov Yu. M., “The boundedness of branching Markov processes”, The Dynkin Festschrift. Markov Processes and Their Applications, Progr. Probab., 34, ed. M. Freidlin, Birkhäuser, Boston, 1994, 143–152 | MR | Zbl

[11] Karpelevich F. I., Pechersky E. A., Suhov Yu. M., “A phase transition for hyperbolic branching processes”, Comm. Math. Phys., 195:3 (1998), 627–642 | DOI | MR | Zbl

[12] Karpelevich F. I., Suhov Yu. M., “A criterion of boundedness of discrete branching random walk”, Classical and Modern Branching Processes, IMA Vol. Math. Appl., 84, eds. K. B. Athreya and P. Jagers, Springer-Verlag, New York, 1997, 141–155 | MR | Zbl

[13] Karpelevich F. I., Suhov Yu.M., “Boundedness of one-dimensional branching Markov processes”, J. Appl. Math. Stochastic Anal., 10:4 (1997), 307–332 | DOI | MR | Zbl

[14] Lalley S., Sellke T., “Hyperbolic branching Brownian motion”, Probab. Theory Relat. Fields, 108:2 (1997), 171–192 | DOI | MR | Zbl