Localization transition for a copolymer in an emulsion
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 193-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study a two-dimensional directed self-avoiding walk model of a random copolymer in a random emulsion. The polymer is a random concatenation of monomers of two types, $A$ and $B$, each occurring with density $\frac12$. The emulsion is a random mixture of liquids of two types, $A$ and $B$, organized in large square blocks occurring with density $p$ and $1-p$, respectively, where $p \in (0,1)$. The polymer in the emulsion has an energy that is minus $\alpha$ times the number of $AA$-matches minus $\beta$ times the number of $BB$-matches, where $\alpha,\beta\inR$ are interaction parameters. Symmetry considerations show that without loss of generality we may restrict our attention to the cone $\{(\alpha,\beta) \inR^2:\alpha\ge|\beta|\}$. We derive a variational expression for the quenched free energy per monomer in the limit as the length $n$ of the polymer tends to infinity and the blocks in the emulsion have size $L_n$ such that $L_n\to\infty$ and $L_n/n\to 0$. To make the model mathematically tractable, we assume that the polymer can only enter and exit a pair of neighboring blocks at diagonally opposite corners. Although this is an unphysical restriction, it turns out that the model exhibits rich and physically relevant behavior. Let $p_c \approx 0.64$ be the critical probability for directed bond percolation on the square lattice. We show that for $p \ge p_c$ the free energy has a phase transition along one curve in the cone, which turns out to be independent of $p$. At this curve, there is a transition from a phase where the polymer is fully $A$-delocalized (i.e., it spends almost all of its time deep inside the $A$-blocks) to a phase where the polymer is partially $AB$-localized (i.e., it spends a positive fraction of its time near those interfaces where it diagonally crosses the $A$-block rather than the $B$-block). We show that for $p the free energy has a phase transition along two curves in the cone, both of which turn out to depend on $p$. At the first curve there is a transition from a phase where the polymer is fully $A,B$-delocalized (i.e., it spends almost all of its time deep inside the $A$-blocks and the $B$-blocks) to a partially $BA$-localized phase, while at the second curve there is a transition from a partially $BA$-localized phase to a phase where both partial $BA$-localization and partial $AB$-localization occur simultaneously. We derive a number of qualitative properties of the critical curves. The supercritical curve is nondecreasing and concave with a finite horizontal asymptote. Remarkably, the first subcritical curve does not share these properties and does not converge to the supercritical curve as $p\uparrow p_c$. Rather, the second subcritical curve converges to the supercritical curve as $p\downarrow 0$.
Keywords: random copolymer, random emulsion, localization, delocalization, percolation, large deviations.
Mots-clés : phase transition
@article{TVP_2006_51_1_a12,
     author = {F. den Hollander and S. Whittington},
     title = {Localization transition for a copolymer in an emulsion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {193--240},
     year = {2006},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a12/}
}
TY  - JOUR
AU  - F. den Hollander
AU  - S. Whittington
TI  - Localization transition for a copolymer in an emulsion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 193
EP  - 240
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a12/
LA  - en
ID  - TVP_2006_51_1_a12
ER  - 
%0 Journal Article
%A F. den Hollander
%A S. Whittington
%T Localization transition for a copolymer in an emulsion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 193-240
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a12/
%G en
%F TVP_2006_51_1_a12
F. den Hollander; S. Whittington. Localization transition for a copolymer in an emulsion. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 193-240. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a12/

[1] Albeverio S., Zhou X. Y., “Free energy and some sample path properties of a random walk with random potential”, J. Stat. Phys., 83:3–4 (1996), 573–622 | DOI | MR | Zbl

[2] Biskup M., den Hollander F., “A heteropolymer near a linear interface”, Ann. Appl. Probab., 9:3 (1999), 668–687 | DOI | MR | Zbl

[3] Bodineau T., Giacomin G., “On the localization transition of random copolymers near selective interfaces”, J. Stat. Phys., 117:5–6 (2004), 801–818 | DOI | MR | Zbl

[4] Bolthausen E., den Hollander F., “Localization transition for a polymer near an interface”, Ann. Probab., 25:3 (1997), 1334–1366 | DOI | MR | Zbl

[5] Brazhnyi V. A., Stepanow S., “Adsorption of a random heteropolymer with random self-interactions onto an interface”, Eur. Phys. J. B — Condensed Matter, 27:3 (2002), 355–362 | DOI

[6] Caravenna F., Giacomin G., Gubinelli M., “A numerical approach to copolymers at selective interfaces”, J. Stat. Phys. (to appear) | MR

[7] Causo M. S., Whittington S. G., “A Monte Carlo investigation of the localization transition in random copolymers at an interface”, J. Phys. A: Math. Gen., 36:13 (2003), L189–L195 | DOI

[8] Comets F., “Large deviation estimates for a conditional probability distribution. Applications to random interaction Gibbs measures”, Probab. Theory Relat. Fields, 80:3 (1989), 407–432 | DOI | MR | Zbl

[9] Garel T., Huse D. A., Leibler S., Orland H., “Localization transition of random chains at interfaces”, Europhys. Lett., 8 (1989), 9–13 | DOI

[10] Garel T., Monthus C., “Two-dimensional wetting with binary disorder: a numerical study of the loop statistics”, Eur. Phys. J. B — Condensed Matter, 46:1 (2005), 117–125 | DOI

[11] Giacomin G., Toninelli F. L., “Estimates on path delocalization for copolymers at selective interfaces”, Probab. Theory Relat. Fields, 133:4 (2005), 464–482 | DOI | MR | Zbl

[12] Giacomin G., Toninelli F. L., “Smoothing effect of quenched disorder on polymer depinning transitions”, Commun. Math. Phys. (to appear) | MR

[13] Giacomin G., Toninelli F. L., The localized phase of disordered copolymers with adsorption, arXiv:math.PR/0510047 | MR

[14] Greven A., den Hollander F., “Branching random walk in random environment: phase transitions for local and global growth rates”, Probab. Theory Relat. Fields, 91:2 (1992), 195–249 | DOI | MR | Zbl

[15] Grosberg A., Izrailev S., Nechaev S., “Phase transition in a heteropolymer chain at a selective interface”, Phys. Rev. E, 50:3 (1994), 1912–1921 | DOI | MR

[16] den Hollander F., Large Deviations, Fields Institute Monograph Series, AMS, Providence, 2000, 143 pp. | MR

[17] den Hollander F., Wüthrich M., “Diffusion of a heteropolymer in a multi-interface medium”, J. Stat. Phys., 114 (2004), 849–889 | DOI | MR | Zbl

[18] James E. W., Soteros C. E., Whittington S. G., “Localization of a random copolymer at an interface: an exact enumeration study”, J. Phys. A: Math. Gen., 36:46 (2003), 11575–11584 | DOI | MR | Zbl

[19] Janse van Rensburg E. J., Orlandini E., Tesi M. C., Whittington S. G., “Self-averaging in random self-attracting polygons”, J. Phys. A: Math. Gen., 34:6 (2001), L37–L44 | DOI | Zbl

[20] Madras N., Whittington S. G., “Self-averaging in finite random copolymers”, J. Phys. A: Math. Gen., 35:28 (2002), L427–L431 | DOI | MR | Zbl

[21] Madras N., Whittington S. G., “Localization of a random copolymer at an interface”, J. Phys. A: Math. Gen., 36:4 (2003), 923–938 | DOI | MR | Zbl

[22] Maritan A., Riva M. P., Trovato A., “Heteropolymers in a solvent at an interface”, J. Phys. A: Math. Gen., 32:32 (1999), L275–L280 | DOI | MR | Zbl

[23] Martin R., Causo M. S., Whittington S. G., “Localization transition for a randomly coloured self-avoiding walk at an interface”, J. Phys. A: Math. Gen., 33:44 (2000), 7903–7918 | DOI | MR | Zbl

[24] Monthus C., “On the localization of random heteropolymers at the interface between two selective solvents”, Eur. Phys. J. B — Condensed Matter, 13:1 (2000), 111–130

[25] Orlandini E., Rechnitzer A., Whittington S. G., “Random copolymers and the Morita approximation: polymer adsorption and polymer localization”, J. Phys. A: Math. Gen., 35:36 (2002), 7729–7751 | DOI | MR | Zbl

[26] Orlandini E., Tesi M. C., Whittington S. G., “A self-avoiding walk model of random copolymer adsorption”, J. Phys. A: Math. Gen., 32:3 (1999), 469–477 | DOI | MR | Zbl

[27] Orlandini E., Tesi M. C., Whittington S. G., “Self-averaging in models of random copolymer collapse”, J. Phys. A: Math. Gen., 33:2 (2000), 259–266 | DOI | MR | Zbl

[28] Seppäläinen T., “Entropy, limit theorems, and variational principles for disordered lattice systems”, Commun. Math. Phys., 171:2 (1995), 233–277 | DOI | MR | Zbl

[29] Sinai Ya. G., “Sluchainoe bluzhdanie so sluchainym potentsialom”, Teoriya veroyatn. i ee primen., 38:2 (1993), 457–460 | MR | Zbl

[30] Soteros C. E., Whittington S. G., “The statistical mechanics of random copolymers”, J. Phys. A: Math. Gen., 37:41 (2004), R279–R325 | DOI | MR | Zbl

[31] Stepanow S., Sommer J.-U., Erukhimovich I. Ya., “Localization transition of random copolymers at interfaces”, Phys. Rev. Lett., 81:20 (1998), 4412–4415 | DOI

[32] Trovato A., Maritan A., “A variational approach to the localization transition of heteropolymers at interfaces”, Europhys. Lett., 46 (1999), 301–306 | DOI

[33] Whittington S. G., “Random copolymers”, Physica A, 314:1–4 (2002), 214–219 | DOI | MR | Zbl