Limit theorems for spectra of random matrices with martingale structure
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 171-192

Voir la notice de l'article provenant de la source Math-Net.Ru

We study classical ensembles of real symmetric random matrices introduced by Eugene Wigner. We discuss Stein's method for the asymptotic approximation of expectations of functions of the normalized eigenvalue counting measure of high dimensional matrices. The method is based on a differential equation for the density of the semicircle law.
Keywords: Stein's method, semicircle law.
Mots-clés : random matrices
@article{TVP_2006_51_1_a11,
     author = {F. G\"otze and A. N. Tikhomirov},
     title = {Limit theorems for spectra of random matrices with martingale structure},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {171--192},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. N. Tikhomirov
TI  - Limit theorems for spectra of random matrices with martingale structure
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 171
EP  - 192
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/
LA  - en
ID  - TVP_2006_51_1_a11
ER  - 
%0 Journal Article
%A F. Götze
%A A. N. Tikhomirov
%T Limit theorems for spectra of random matrices with martingale structure
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 171-192
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/
%G en
%F TVP_2006_51_1_a11
F. Götze; A. N. Tikhomirov. Limit theorems for spectra of random matrices with martingale structure. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 171-192. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/