Limit theorems for spectra of random matrices with martingale structure
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 171-192
Voir la notice de l'article provenant de la source Math-Net.Ru
We study classical ensembles of real symmetric random matrices introduced by Eugene Wigner. We discuss Stein's method for the asymptotic approximation of expectations of functions of the normalized eigenvalue counting measure of high dimensional matrices. The method is based on a differential equation for the density of the semicircle law.
Keywords:
Stein's method, semicircle law.
Mots-clés : random matrices
Mots-clés : random matrices
@article{TVP_2006_51_1_a11,
author = {F. G\"otze and A. N. Tikhomirov},
title = {Limit theorems for spectra of random matrices with martingale structure},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {171--192},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/}
}
TY - JOUR AU - F. Götze AU - A. N. Tikhomirov TI - Limit theorems for spectra of random matrices with martingale structure JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 171 EP - 192 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/ LA - en ID - TVP_2006_51_1_a11 ER -
F. Götze; A. N. Tikhomirov. Limit theorems for spectra of random matrices with martingale structure. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 171-192. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/