Limit theorems for spectra of random matrices with martingale structure
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 171-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study classical ensembles of real symmetric random matrices introduced by Eugene Wigner. We discuss Stein's method for the asymptotic approximation of expectations of functions of the normalized eigenvalue counting measure of high dimensional matrices. The method is based on a differential equation for the density of the semicircle law.
Keywords: Stein's method, semicircle law.
Mots-clés : random matrices
@article{TVP_2006_51_1_a11,
     author = {F. G\"otze and A. N. Tikhomirov},
     title = {Limit theorems for spectra of random matrices with martingale structure},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {171--192},
     year = {2006},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. N. Tikhomirov
TI  - Limit theorems for spectra of random matrices with martingale structure
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 171
EP  - 192
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/
LA  - en
ID  - TVP_2006_51_1_a11
ER  - 
%0 Journal Article
%A F. Götze
%A A. N. Tikhomirov
%T Limit theorems for spectra of random matrices with martingale structure
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 171-192
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/
%G en
%F TVP_2006_51_1_a11
F. Götze; A. N. Tikhomirov. Limit theorems for spectra of random matrices with martingale structure. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 171-192. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a11/

[1] Bai Z. D., “Methodologies in spectral analysis of large-dimensional random matrices: a review”, Statist. Sinica, 9:3 (1999), 611–661 | MR

[2] Bronk B. V., Topics in the theory of random matrices, Thesis, Princeton Univ., Princeton, 1964

[3] Girko V. L., “Asimptotika raspredeleniya spektra sluchainykh matrits”, Uspekhi matem. nauk, 44:4(268) (1989), 7–34 | MR

[4] Gotze F., Tikhomirov A. N., “Rate of convergence to the semicircle law”, Probab. Theory Related Fields, 127:2 (2003), 228–276 | DOI | MR

[5] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.

[6] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR

[7] Khorunzhy A. M., Khoruzhenko B. A., Pastur L. A., “Asymptotic properties of large random matrices with independent entries”, J. Math. Phys., 37 (1996), 5033–5060 | DOI | MR | Zbl

[8] Marchenko V. A., Pastur L. A., “Raspredelenie sobstvennykh znachenii v nekotorykh ansamblyakh sluchainykh matrits”, Matem. sb., 72(114):4 (1967), 507–536 | Zbl

[9] Mehta M. L., Random Matrices, Academic Press, Boston, 1991, 562 pp. | MR | Zbl

[10] Pastur L. A., Shcherbina M., “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles”, J. Statist. Phys., 86:1–2 (1997), 109–147 | DOI | MR | Zbl

[11] Boutet de Monvel A., Pastur L., Shcherbina M., “On the statistical mechanics approach in the random matrix theory: the integrated density of states”, J. Statist. Phys., 79:3–4 (1995), 585–611 | MR | Zbl

[12] Pastur L., “Eigenvalue distribution of random matrices: some recent results”, Ann. Inst. H. Poincaré Phys. Théor., 64 (1996), 325–337 | MR | Zbl

[13] Pastur L. A., “Spektry sluchainykh samosopryazhennykh operatorov”, Uspekhi matem. nauk, 28:1(169) (1973), 3–64 | MR | Zbl

[14] Rosenzweig N., “Statistical mechanics of equally likely quantum systems”, Statistical Physics, v. 3 (Brandeis Summer Institute, 1962), W. A. Benjamin, New York, 1963, 91–158 | MR

[15] Wigner E. P., “Characteristic vectors of bordered matrices with infinite dimensions”, Ann. Math., 62 (1955), 548–564 | DOI | MR | Zbl

[16] Wigner E. P., “On the distribution of the roots of certain symmetric matrices”, Ann. Math., 67 (1958), 325–327 | DOI | MR | Zbl