Large deviations of the empirical current in interacting particle systems
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 144-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study current fluctuations in lattice gases in the hydrodynamic scaling limit. More precisely, we prove a large deviation principle for the empirical current in the symmetric simple exclusion process with rate functional $I$. We then estimate the asymptotic probability of a fluctuation of the average current over a large time interval and show that the corresponding rate function can be obtained by solving a variational problem for the functional $I$. For the symmetric simple exclusion process the minimizer is time independent so that this variational problem can be reduced to a time-independent one. On the other hand, for other models the minimizer is time dependent. This phenomenon is naturally interpreted as a dynamical phase transition.
Keywords: interacting particle systems, large deviations
Mots-clés : hydrodynamic limit.
@article{TVP_2006_51_1_a10,
     author = {L. Bertini and D. Gabrielli and G. Jona-Lasinio and C. Landim and A. De Sole},
     title = {Large deviations of the empirical current in interacting particle systems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {144--170},
     year = {2006},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a10/}
}
TY  - JOUR
AU  - L. Bertini
AU  - D. Gabrielli
AU  - G. Jona-Lasinio
AU  - C. Landim
AU  - A. De Sole
TI  - Large deviations of the empirical current in interacting particle systems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 144
EP  - 170
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a10/
LA  - en
ID  - TVP_2006_51_1_a10
ER  - 
%0 Journal Article
%A L. Bertini
%A D. Gabrielli
%A G. Jona-Lasinio
%A C. Landim
%A A. De Sole
%T Large deviations of the empirical current in interacting particle systems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 144-170
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a10/
%G en
%F TVP_2006_51_1_a10
L. Bertini; D. Gabrielli; G. Jona-Lasinio; C. Landim; A. De Sole. Large deviations of the empirical current in interacting particle systems. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 144-170. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a10/

[1] Bertini L., De Sole A., Gabrielli D., Jona-Lasinio G., “Landim C Macroscopic fluctuation theory for stationary nonequilibrium state”, J. Statist. Phys., 107:3–4 (2002), 635–675 | DOI | MR | Zbl

[2] Bertini L., De Sole A., Gabrielli D., Jona-Lasinio G., Landim C., “Large deviations for the boundary driven symmetric simple exclusion process”, Math. Phys. Anal. Geom., 6:3 (2003), 231–267 | DOI | MR | Zbl

[3] Bertini L., De Sole A., Gabrielli D., Jona-Lasinio G., Landim C., “Current fluctuations in stochastic lattice gases”, Phys. Rev. Lett., 94 (2005), paper 030601 | DOI

[4] Bertini L., De Sole A., Gabrielli D., Jona-Lasinio G., and Landim C., Nonequilibrium current fluctuations in stochastic lattice gases, arXiv:condmat/0506664

[5] Bertini L., Gabrielli D., and Lebowitz J. L., “Large deviations for a stochastic model of heat flow”, J. Statist. Phys., 121:5–6 (2005), 843–885 | DOI | MR | Zbl

[6] Bodineau T., Derrida B., “Current fluctuations in nonequilibrium diffusive systems: an additivity principle”, Phys. Rev. Lett., 92 (2004), paper 180601 | DOI

[7] Bodineau T., Derrida B., Distribution of current in nonequilibrium diffusive systems and phase transitions, arXiv:cond-mat/0506540 | MR

[8] Braides A., $\Gamma$-convergence for Beginners, Oxford Univ. Press, Oxford, 2002, 218 pp. | MR | Zbl

[9] Donsker M. D., Varadhan S. R. S., “Large deviations from a hydrodynamic scaling limit”, Comm. Pure Appl. Math., 42:3 (1989), 243–270 | DOI | MR | Zbl

[10] Kipnis C., Landim C., Scaling Limits of Interacting Particle Systems, Springer-Verlag, Berlin, 1999, 442 pp. | MR

[11] Kipnis C., Marchioro C., Presutti E., “Heat flow in an exactly solvable model”, J. Statist. Phys., 27:4 (1982), 65–74 | DOI | MR

[12] Kipnis C., Olla S., Varadhan S. R. S., “Hydrodynamics and large deviations for a simple exclusion process”, Comm. Pure Appl. Math., 42:2 (1989), 115–137 | DOI | MR | Zbl

[13] Spohn H., Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1991, 342 pp.