Erdős measures for the goldenshift and Markov chains of the second order
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 5-21
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the random variable $\zeta=\omega_1\beta^{-1}+\omega_2\beta^{-2}+\dotsb$, where $\omega_1,\omega_2,\dots$ is the stationary ergodic 2-step Markov chain with states 0, 1 and $\beta$ is the golden ratio. The paper finds all cases of absolute continuity of the distribution function of the random variable $\zeta$. For other cases the distribution function in continuous and singular. We prove that the respective Erdős measures arise under gluing together the states in a finite Markov chain. Ergodic properties of invariant Erdős measure are studied.
Keywords:
2-step Markov chain, golden ratio, Erdős measure, maximal entropy measure, measure of Hausdorff dimensionality.
Mots-clés : $K$-automorphism
Mots-clés : $K$-automorphism
@article{TVP_2006_51_1_a1,
author = {Z. I. Bezhaeva and V. I. Oseledets},
title = {Erd\H{o}s measures for the goldenshift and {Markov} chains of the second order},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {5--21},
year = {2006},
volume = {51},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a1/}
}
Z. I. Bezhaeva; V. I. Oseledets. Erdős measures for the goldenshift and Markov chains of the second order. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a1/
[1] Sidorov N., Vershik A., “Ergodic properties of the Erdös measures, the entropy of the golden shift, and related problems”, Monatsh. Math., 126:3 (1998), 215–261 | DOI | MR | Zbl
[2] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2004, 464 pp.
[3] Markus B., Petersen K., Williams S., “Transmission rates and factors of Markov chains”, Contemp. Math., 26, 1984, 279–293 | MR
[4] Omladič M., Radjiavi H., “Irreducible semigroups with multiplicative spectral radius”, Linear Algebra Appl., 251 (1997), 59–72 | DOI | MR | Zbl
[5] Bezhaeva Z. I., Oseledets V. I., “Mery Erdësha, soficheskie mery i markovskie tsepi”, Zap. nauchn. semin. POMI, 326, 2005, 28–47 | MR | Zbl