Erd\H os measures for the goldenshift and Markov chains of the second order
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 5-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the random variable $\zeta=\omega_1\beta^{-1}+\omega_2\beta^{-2}+\dotsb$, where $\omega_1,\omega_2,\dots$ is the stationary ergodic 2-step Markov chain with states 0, 1 and $\beta$ is the golden ratio. The paper finds all cases of absolute continuity of the distribution function of the random variable $\zeta$. For other cases the distribution function in continuous and singular. We prove that the respective Erdős measures arise under gluing together the states in a finite Markov chain. Ergodic properties of invariant Erdős measure are studied.
Keywords: 2-step Markov chain, golden ratio, Erdős measure, maximal entropy measure, measure of Hausdorff dimensionality.
Mots-clés : $K$-automorphism
@article{TVP_2006_51_1_a1,
     author = {Z. I. Bezhaeva and V. I. Oseledets},
     title = {Erd\H os measures for the goldenshift and {Markov} chains of the second order},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a1/}
}
TY  - JOUR
AU  - Z. I. Bezhaeva
AU  - V. I. Oseledets
TI  - Erd\H os measures for the goldenshift and Markov chains of the second order
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 5
EP  - 21
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a1/
LA  - ru
ID  - TVP_2006_51_1_a1
ER  - 
%0 Journal Article
%A Z. I. Bezhaeva
%A V. I. Oseledets
%T Erd\H os measures for the goldenshift and Markov chains of the second order
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 5-21
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a1/
%G ru
%F TVP_2006_51_1_a1
Z. I. Bezhaeva; V. I. Oseledets. Erd\H os measures for the goldenshift and Markov chains of the second order. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/TVP_2006_51_1_a1/