Strengthening of Prokhorov's arcsine-inequality
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 767-774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proves the strengthening of the known Prokhorov inequality for sums of independent uniformly bounded random variables. An analogous inequality is proved for tails of infinitely divisible distribution functions whose spectral functions are concentrated on some segment.
Keywords: random variable, martingale-difference, infinitely divisible distribution function, spectral function.
Mots-clés : filtration
@article{TVP_2005_50_4_a7,
     author = {V. M. Kruglov},
     title = {Strengthening of {Prokhorov's} arcsine-inequality},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {767--774},
     year = {2005},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a7/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - Strengthening of Prokhorov's arcsine-inequality
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 767
EP  - 774
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a7/
LA  - ru
ID  - TVP_2005_50_4_a7
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T Strengthening of Prokhorov's arcsine-inequality
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 767-774
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a7/
%G ru
%F TVP_2005_50_4_a7
V. M. Kruglov. Strengthening of Prokhorov's arcsine-inequality. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 767-774. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a7/

[1] Prokhorov Yu. V., “Odna ekstremalnaya zadacha teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 4:2 (1959), 211–214 | Zbl

[2] de la Peña V. H., Giné E., Decoupling, Springer-Verlag, New York, 1999, 392 pp. | MR

[3] Levental S. A., “A uniform CLT for uniformly bounded families of martingale differences”, J. Theoret. Probab., 2:3 (1989), 271–287 | DOI | MR | Zbl

[4] Hitczenko P., “Best constants in martingale version of Rosenthal's inequality”, Ann. Probab., 18:4 (1990), 1656–1668 | DOI | MR | Zbl

[5] Bennett G., “Probability inequalities for the sum of independent random variables”, J. Amer. Statist. Assoc., 57 (1962), 33–45 | DOI | Zbl

[6] Bennett G., “On the probability of large deviations from the expectation for sums of bounded, independent random variables”, Biometrika, 50 (1963), 528–535 | MR | Zbl

[7] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58:301 (1963), 13–30 | DOI | MR | Zbl

[8] Kolmogorov A. N., Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986, 534 pp. | MR

[9] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin \publadd M., Gostekhizdat, L., 1949, 264 pp. | MR

[10] Kruglov V. M., Antonov S. N., “Ob asimptoticheskom povedenii bezgranichno delimykh raspredelenii v banakhovom prostranstve”, Teoriya veroyatn. i ee primen., 27:4 (1982), 625–642 | MR | Zbl