On Markov perturbations of quantum random problems with stationary increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 754-763 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce “Markovian” cocycle perturbations of quantum stochastic processes with stationary increments and the Kolmogorov flows generated by them, which are characterized by a localization of the perturbation to the algebra of events of the past. The Markovian perturbations of the Kolmogorov flow generated by the quantum white noise result in the groups of automorphisms on the algebras of events (the von Neumann algebras in the quantum case) possessing the restrictions being isomorphic to the initial Kolmogorov flow. The possibility of obtaining this restriction can be interpreted as some analogue (in the quantum case) of the Wold decomposition, which allows us to exclude “nondeterministic” part of the process.
Keywords: quantum stochastic processes, cocycle perturbations of the Kolmogorov flow, Wold decomposition.
@article{TVP_2005_50_4_a5,
     author = {G. G. Amosov},
     title = {On {Markov} perturbations of quantum random problems with stationary increments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {754--763},
     year = {2005},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a5/}
}
TY  - JOUR
AU  - G. G. Amosov
TI  - On Markov perturbations of quantum random problems with stationary increments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 754
EP  - 763
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a5/
LA  - ru
ID  - TVP_2005_50_4_a5
ER  - 
%0 Journal Article
%A G. G. Amosov
%T On Markov perturbations of quantum random problems with stationary increments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 754-763
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a5/
%G ru
%F TVP_2005_50_4_a5
G. G. Amosov. On Markov perturbations of quantum random problems with stationary increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 754-763. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a5/

[1] Amosov G. G., “O markovskikh vozmuscheniyakh gruppy unitarnykh operatorov, assotsiirovannoi so sluchainym protsessom so statsionarnymi prirascheniyami”, Teoriya veroyatn. i ee primen., 49:1 (2004), 145–155 | MR | Zbl

[2] Kolmogorov A. N., “Krivye v gilbertovskom prostranstve, invariantnye po otnosheniyu k odnoparametricheskoi gruppe dvizhenii”, Dokl. AN SSSR, 26:1 (1940), 6–9

[3] Kolmogorov A. N., “Spiral Vinera i nekotorye drugie interesnye krivye v gilbertovskom prostranstve”, Dokl. AN SSSR, 26:2 (1940), 115–118

[4] Braun K. S., Kogomologii grupp, Nauka, M., 1987, 384 pp. | MR

[5] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984, 262 pp. | MR

[6] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992, 290 pp. | MR | Zbl

[7] Holevo A. S., Statistical Structure of Quantum Theory, Springer-Verlag, Berlin, 2001, 159 pp. | MR

[8] Kholevo A. S., “Kvantovaya veroyatnost i kvantovaya statistika”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 83, 1991, 5–132 | MR | Zbl

[9] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982, 512 pp. | MR | Zbl

[10] Kolmogorov A. N., “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, Dokl. AN SSSR, 119:5 (1958), 861–864 | MR | Zbl

[11] Emch G. G., “Generalized $K$-flows”, Comm. Math. Phys., 49:3 (1976), 191–215 | DOI | MR | Zbl

[12] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970, 384 pp. | MR

[13] Khida T., Brounovskoe dvizhenie, Nauka, M., 1987, 304 pp. | MR

[14] Accardi L., Frigerio A., Lewis J. T., “Quantum stochastic processes”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 18:1 (1982), 97–133 | DOI | MR | Zbl

[15] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Fizmatgiz, M., 1963, 284 pp. | MR

[16] Kholevo A. S., “O formule Levi–Khinchina v nekommutativnoi teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 38:4 (1993), 842–857 | MR | Zbl

[17] Holevo A. S., “Lévy processes and continuous quantum measurements”, Lévy Processes. Theory and Applications, eds. O. E. Barndorff-Nielsen et al., Birkhäuser, Boston, 2001, 225–239 | MR | Zbl

[18] Schürmann M., White noise on bialgebras, Lecture Notes in Math., 1544, 1993, 1–146 pp. | MR | Zbl

[19] Powers R. T., “An index theory for semigroups of $^*$-endomorphisms of B(H) and type $II_1$ factors”, Canad. J. Math., 40:1 (1988), 86–114 | MR | Zbl

[20] Bulinskii A. V., “Algebraicheskie $K$-sistemy i polupotoki sdvigov Pauersa”, Uspekhi matem. nauk, 51:2 (1996), 145–146 | MR

[21] Bulinskii A. V., “Nekotorye asimptoticheskie svoistva $W^*$-dinamicheskikh sistem”, Funkts. analiz i ego pril., 29:2 (1995), 64–67 | MR