On the CLT for means under the rotation action. I
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 733-753 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method allowing us to build, for various typical means generated by the action of any given irrational rotation of the circle, examples of $L^2$ functions satisfying the central limit theorem (CLT). We consider, for instance, nonlinear means, and means along the sequence of squares. In the latter case, the circle method of Hardy and Littlewood is used. We also give an example of continuous Gaussian random Fourier series with sample paths satisfying both the CLT and the almost sure CLT.
Keywords: central limit theorem, almost sure central limit theorem, nonlinear averages, square averages, weighted averages, Gaussian randomization, random Fourier series, circle method.
Mots-clés : irrational rotations
@article{TVP_2005_50_4_a4,
     author = {M. Weber},
     title = {On the {CLT} for means under the rotation {action.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {733--753},
     year = {2005},
     volume = {50},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a4/}
}
TY  - JOUR
AU  - M. Weber
TI  - On the CLT for means under the rotation action. I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 733
EP  - 753
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a4/
LA  - en
ID  - TVP_2005_50_4_a4
ER  - 
%0 Journal Article
%A M. Weber
%T On the CLT for means under the rotation action. I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 733-753
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a4/
%G en
%F TVP_2005_50_4_a4
M. Weber. On the CLT for means under the rotation action. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 733-753. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a4/