Limit behavior of Ito finite sums with avaraging
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 711-732 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the limiting behavior of finite sums with averaging containing Lévy processes is considered. For this purpose a new class of stochastic integrals for Lévy processes including, in particular, the Itô integral, Stratonovich integral, and others, is defined. By using these integrals complete classification of the limiting behavior of the considered sums is given.
Keywords: algebra of generalized stochastic processes, stochastic integral.
Mots-clés : Lévy processes
@article{TVP_2005_50_4_a3,
     author = {N. V. Lazakovich and O. L. Yablonskii},
     title = {Limit behavior of {Ito} finite sums with avaraging},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {711--732},
     year = {2005},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a3/}
}
TY  - JOUR
AU  - N. V. Lazakovich
AU  - O. L. Yablonskii
TI  - Limit behavior of Ito finite sums with avaraging
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 711
EP  - 732
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a3/
LA  - ru
ID  - TVP_2005_50_4_a3
ER  - 
%0 Journal Article
%A N. V. Lazakovich
%A O. L. Yablonskii
%T Limit behavior of Ito finite sums with avaraging
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 711-732
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a3/
%G ru
%F TVP_2005_50_4_a3
N. V. Lazakovich; O. L. Yablonskii. Limit behavior of Ito finite sums with avaraging. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 711-732. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a3/

[1] Itô K., “Stochastic integral”, Proc. Imp. Acad. Tokyo, 20 (1944), 519–524 | DOI | MR | Zbl

[2] Fisk D. L., Quasi-martingales and stochastic integrals, Tech. Rep., v. 1, Dept. Math. Michigan State Univ., 1963

[3] Stratonovich R. L., “Novaya forma zapisi stokhasticheskikh integralov i uravnenii”, Vestnik Mosk. un-ta, 1964, no. 1, 3–12 | MR

[4] Ogawa S., “On a Riemann definition of the stochastic integral. I, II”, Proc. Japan Acad., 46:21 (1970), 153–157 ; 158–161 | DOI | MR | Zbl | Zbl

[5] Pugachev V. S., Sinitsyn I. N., Stokhasticheskie differentsialnye sistemy. Analiz i filtratsiya, Nauka, M., 1990, 630 pp. | MR | Zbl

[6] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 611 pp. | MR

[7] Wong E., Zakai M., “On the convergence of ordinary integrals to stochastic integrals”, Ann. Math. Statist., 36:5 (1965), 1560–1564 | DOI | MR | Zbl

[8] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986, 445 pp. | MR

[9] Protter P., Stochastic Integration and Differential Equations: A New Approach, Springer-Verlag, Berlin, 1990, 302 pp. | MR | Zbl

[10] Lazakovich N. V., “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Dokl. AN Belarusi, 38:5 (1994), 23–27 | MR | Zbl

[11] Lazakovich N. V., Stashulenok S. P., Stemkovskaya T. V., “Assotsiirovannye resheniya uravnenii v differentsialakh v pryamom proizvedenii algebr obobschennykh sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 43:2 (1998), 272–293 | MR | Zbl

[12] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988, 512 pp. | MR

[13] Lazakovich N. V., Stashulenok S. P., Yablonskii O. L., “Nekotorye approksimatsii stokhasticheskikh $\theta$-integralov”, Litov. matem. sb., 39:2 (1999), 248–256 | MR | Zbl

[14] Yablonskii O. L., “Klassifikatsiya sposobov approksimatsii stokhasticheskikh integralov v algebre obobschennykh sluchainykh protsessov”, Dokl. NAN Belarusi, 44:2 (2000), 23–25 | MR | Zbl

[15] Lazakovich N. V., Yablonskii O. L., “O priblizhenii reshenii odnogo klassa stokhasticheskikh uravnenii”, Sib. matem. zhurn., 42:1 (2001), 87–102 | MR | Zbl

[16] Lazakovich N. V., Yablonski A. L., “On the approximation of the solutions of stochastic equations with $\theta$-integrals”, Stochastics Stochastics Rep., 76:2 (2004), 135–145 | MR | Zbl

[17] Lesnevskii V. E., “O priblizhenii reshenii stokhasticheskikh differentsialnykh uravnenii, soderzhaschikh sluchainyi protsess Puassona”, Dokl. NAN Belarusi, 44:4 (2000), 34–36 | MR | Zbl

[18] Marcus S. I., “Modeling and approximation of stochastic differential equations driven by semimartingales”, Stochastics, 4:3 (1981), 223–245 | MR | Zbl

[19] Kurtz T., Pardoux É., Protter P., “Stratonovich stochastic differential equations driven by general semimartingales”, Ann. Inst. H. Poincaré, 31:2 (1995), 351–377 | MR | Zbl

[20] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. III, Nauka, M., 1975, 496 pp. | MR