Mots-clés : Lévy processes
@article{TVP_2005_50_4_a3,
author = {N. V. Lazakovich and O. L. Yablonskii},
title = {Limit behavior of {Ito} finite sums with avaraging},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {711--732},
year = {2005},
volume = {50},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a3/}
}
N. V. Lazakovich; O. L. Yablonskii. Limit behavior of Ito finite sums with avaraging. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 711-732. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a3/
[1] Itô K., “Stochastic integral”, Proc. Imp. Acad. Tokyo, 20 (1944), 519–524 | DOI | MR | Zbl
[2] Fisk D. L., Quasi-martingales and stochastic integrals, Tech. Rep., v. 1, Dept. Math. Michigan State Univ., 1963
[3] Stratonovich R. L., “Novaya forma zapisi stokhasticheskikh integralov i uravnenii”, Vestnik Mosk. un-ta, 1964, no. 1, 3–12 | MR
[4] Ogawa S., “On a Riemann definition of the stochastic integral. I, II”, Proc. Japan Acad., 46:21 (1970), 153–157 ; 158–161 | DOI | MR | Zbl | Zbl
[5] Pugachev V. S., Sinitsyn I. N., Stokhasticheskie differentsialnye sistemy. Analiz i filtratsiya, Nauka, M., 1990, 630 pp. | MR | Zbl
[6] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 611 pp. | MR
[7] Wong E., Zakai M., “On the convergence of ordinary integrals to stochastic integrals”, Ann. Math. Statist., 36:5 (1965), 1560–1564 | DOI | MR | Zbl
[8] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986, 445 pp. | MR
[9] Protter P., Stochastic Integration and Differential Equations: A New Approach, Springer-Verlag, Berlin, 1990, 302 pp. | MR | Zbl
[10] Lazakovich N. V., “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Dokl. AN Belarusi, 38:5 (1994), 23–27 | MR | Zbl
[11] Lazakovich N. V., Stashulenok S. P., Stemkovskaya T. V., “Assotsiirovannye resheniya uravnenii v differentsialakh v pryamom proizvedenii algebr obobschennykh sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 43:2 (1998), 272–293 | MR | Zbl
[12] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988, 512 pp. | MR
[13] Lazakovich N. V., Stashulenok S. P., Yablonskii O. L., “Nekotorye approksimatsii stokhasticheskikh $\theta$-integralov”, Litov. matem. sb., 39:2 (1999), 248–256 | MR | Zbl
[14] Yablonskii O. L., “Klassifikatsiya sposobov approksimatsii stokhasticheskikh integralov v algebre obobschennykh sluchainykh protsessov”, Dokl. NAN Belarusi, 44:2 (2000), 23–25 | MR | Zbl
[15] Lazakovich N. V., Yablonskii O. L., “O priblizhenii reshenii odnogo klassa stokhasticheskikh uravnenii”, Sib. matem. zhurn., 42:1 (2001), 87–102 | MR | Zbl
[16] Lazakovich N. V., Yablonski A. L., “On the approximation of the solutions of stochastic equations with $\theta$-integrals”, Stochastics Stochastics Rep., 76:2 (2004), 135–145 | MR | Zbl
[17] Lesnevskii V. E., “O priblizhenii reshenii stokhasticheskikh differentsialnykh uravnenii, soderzhaschikh sluchainyi protsess Puassona”, Dokl. NAN Belarusi, 44:4 (2000), 34–36 | MR | Zbl
[18] Marcus S. I., “Modeling and approximation of stochastic differential equations driven by semimartingales”, Stochastics, 4:3 (1981), 223–245 | MR | Zbl
[19] Kurtz T., Pardoux É., Protter P., “Stratonovich stochastic differential equations driven by general semimartingales”, Ann. Inst. H. Poincaré, 31:2 (1995), 351–377 | MR | Zbl
[20] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. III, Nauka, M., 1975, 496 pp. | MR