On a two-temperature problem for Klein–Gordon equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 675-710 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Klein–Gordon equation in $\mathbf{R}^n$, $n\geq 2$, with constant or variable coefficients. The initial datum is a random function with a finite mean density of the energy and satisfies a Rosenblatt- or Ibragimov–Linnik-type mixing condition. We also assume that the random function is close to different space-homogeneous processes as $x_n\to\pm\infty$, with the distributions $\mu_\pm$. We study the distribution $\mu_t$ of the random solution at time $t\in\mathbf{R}$. The main result is the convergence of $\mu_t$ to a Gaussian translation-invariant measure as $t\to\infty$ that means the central limit theorem for the Klein–Gordon equation. The proof is based on the Bernstein “room-corridor” method and oscillatory integral estimates. The application to the case of the Gibbs measures $\mu_\pm=g_\pm$ with two different temperatures $T_{\pm}$ is given. It is proved that limit mean energy current density formally is $-\infty\cdot(0,\dots,0,T_+-T_-)$ for the Gibbs measures, and it is finite and equals $-C(0,\dots,0,T_+-T_-)$ with some positive constant $C>0$ for the smoothed solution. This corresponds to the second law of thermodynamics.
Mots-clés : Klein–Gordon equation, Fourier transform
Keywords: Cauchy problem, random initial data, mixing condition, weak convergence of measures, Gaussian measures, covariance functions and matrices, characteristic functional.
@article{TVP_2005_50_4_a2,
     author = {T. V. Dudnikova and A. I. Komech},
     title = {On a two-temperature problem for {Klein{\textendash}Gordon} equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {675--710},
     year = {2005},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a2/}
}
TY  - JOUR
AU  - T. V. Dudnikova
AU  - A. I. Komech
TI  - On a two-temperature problem for Klein–Gordon equation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 675
EP  - 710
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a2/
LA  - ru
ID  - TVP_2005_50_4_a2
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%A A. I. Komech
%T On a two-temperature problem for Klein–Gordon equation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 675-710
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a2/
%G ru
%F TVP_2005_50_4_a2
T. V. Dudnikova; A. I. Komech. On a two-temperature problem for Klein–Gordon equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 675-710. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a2/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[2] Boldrighini C., Pellegrinotti A., Triolo L., “Convergence to stationary states for infinite harmonic systems”, J. Statist. Phys., 30:1 (1983), 123–155 | DOI | MR

[3] Vainberg B. R., “Povedenie pri bolshikh vremenakh reshenii uravneniya Kleina–Gordona”, Trudy Mosk. matem. ob-va, 30, 1974, 139–158 | MR | Zbl

[4] Vainberg B. R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo Mosk. un-ta, M., 1982, 296 pp. | MR | Zbl

[5] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980, 442 pp. | MR

[6] Dobrushin R. L., Suhov Yu. M., “On the problem of the mathematical foundation of the Gibbs postulate in classical statistical mechanics”, Lecture Notes in Phys., 80, 1978, 325–340 | MR | Zbl

[7] Dobrushin R. L., Sukhov Yu. M., “Time asymptotics for some degenerate models of evolution of systems with an infinite number of particles”, J. Soviet Math., 16 (1981), 1277–1340 | DOI | Zbl

[8] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971, 664 pp. | MR

[9] Dudnikova T. V., “Ergodichnost fazovogo potoka volnovogo uravneniya s peremeshivaniem”, Vestnik Mosk. un-ta, 1995, no. 1, 17–22 | MR | Zbl

[10] Dudnikova T. V., Komech A. I., “Ergodicheskie svoistva giperbolicheskikh uravnenii s peremeshivaniem”, Teoriya veroyatn. i ee primen., 41:3 (1996), 505–519 | MR | Zbl

[11] Dudnikova T. V., “Stabilization of space-time statistical solutions of the Klein–Gordon equation”, Russian J. Math. Phys., 5:2 (1997), 179–188 | MR | Zbl

[12] Dudnikova T. V., Komech A. I., Kopylova E. A., Suhov Yu. M., “On convergence to equilibrium distribution. I. The Klein–Gordon equation with mixing”, Comm. Math. Phys., 225:1 (2002), 1–32, arXiv: math-ph/0508042 | DOI | MR | Zbl

[13] Dudnikova T. V., Komech A. I., Ratanov N. E., Suhov Yu. M., “On convergence to equilibrium distribution. II. The wave equation in odd dimensions, with mixing”, J. Statist. Phys., 108:5–6 (2002), 1219–1253, arXiv: math-ph/0508039 | DOI | MR | Zbl

[14] Dudnikova T. V., Komech A. I., Spohn H., “On a two-temperature problem for wave equation”, Markov Process. Related Fields, 8:1 (2002), 43–80, arXiv: math-ph/0508044 | MR | Zbl

[15] Dudnikova T. V., Komech A. I., Spohn H., “On the convergence to statistical equilibrium for harmonic crystal”, J. Math. Phys., 44:6 (2003), 2596–2620, arXiv: math-ph/0210039 | DOI | MR | Zbl

[16] Dudnikova T. V., Komech A. I., Mauser N. J., “On two-temperature problem for harmonic crystals”, J. Statist. Phys., 114:3–4 (2004), 1035–1083, arXiv: math-ph/0211017 | DOI | MR | Zbl

[17] Eckmann J.-P., Pillet C.-A., Rey-Bellet L., “Nonequilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures”, Comm. Math. Phys., 201:3 (1999), 657–697 | DOI | MR | Zbl

[18] Eckmann J.-P., Pillet C.-A., Rey-Bellet L., “Entropy production in nonlinear, thermally driven Hamiltonian systems”, J. Statist. Phys., 95:1–2 (1999), 305–331 | DOI | MR | Zbl

[19] Egorov Yu. V., Komech A. I., Shubin M. A., “Differentsialnye uravneniya s chatnymi proizvodnymi. 2”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 31, VINITI, M., 1988, 5–125 | MR

[20] Hörmander L., The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators, Springer-Verlag, Berlin, 1985, 525 pp. | MR

[21] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[22] Jakšić V., Pillet C.-A., “Ergodic properties of classical dissipative systems. I”, Acta Math., 181:2 (1998), 245–282 | DOI | MR | Zbl

[23] John F., Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, New York, London, 1955, 172 pp. | MR

[24] Komech A. I., Kopylova E. A., Mauser N. J., “On convergence to equilibrium distribution for wave equation in even dimensions”, Ergodic Theory Dynam. Systems, 24:2 (2004), 547–576 | DOI | MR | Zbl

[25] Kopylova E. A., “Stabilizatsiya ctatisticheskikh reshenii uravneniya Kleina–Gordona”, Vestnik Mosk. un-ta, 1986, no. 2, 92–95 | MR | Zbl

[26] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983, 424 pp. | MR

[27] Petrov V. V., Limit Theorems of Probability Theory, Clarendon Press, New York, 1995, 292 pp. | MR | Zbl

[28] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. II, Mir, M., 1978, 396 pp. | MR

[29] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. III, Mir, M., 1982, 443 pp.

[30] Spohn H., Lebowitz J. L., “Stationary nonequilibrium states of infinite harmonic systems”, Comm. Math. Phys., 54:2 (1977), 97–120 | DOI | MR

[31] Fedoryuk M. V., “Metod statsionarnoi fazy i psevdodifferentsialnye operatory”, Uspekhi matem. nauk, 26:1 (1971), 67–112 | MR | Zbl

[32] Fedoryuk M. V., Asimptotika. Integraly i ryady, Nauka, M., 1987, 544 pp. | MR