On almost sure behavior of stable subordinators over rapidly increasing sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 818-822 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(X(t),\ t\geq 0)$ with $X(0)=0$ be a stable subordinator with index $0<\alpha<1$ and let $(t_k)$ be an increasing sequence such that $t_{k+1}/t_k\to\infty$ as $k\to\infty$. Let $(a_t)$ be a positive nondecreasing function of $t$ such that $a(t)/t\leq 1$. Define $Y(t)=X(t+a(t))-X(t)$ and $Z(t)=X(t)-X(t-a(t))$, $t>0$. We obtain law-of-the-iterated-logarithm results for $(X(t_k)),(Y(t_k))$ and $Z(t_k)$, properly normalized.
Keywords: law of iterated logarithm, subsequences, stable subordinators, almost sure bounds.
@article{TVP_2005_50_4_a15,
     author = {R. Vasudeva and G. Divanji},
     title = {On almost sure behavior of stable subordinators over rapidly increasing sequences},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {818--822},
     year = {2005},
     volume = {50},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a15/}
}
TY  - JOUR
AU  - R. Vasudeva
AU  - G. Divanji
TI  - On almost sure behavior of stable subordinators over rapidly increasing sequences
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 818
EP  - 822
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a15/
LA  - en
ID  - TVP_2005_50_4_a15
ER  - 
%0 Journal Article
%A R. Vasudeva
%A G. Divanji
%T On almost sure behavior of stable subordinators over rapidly increasing sequences
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 818-822
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a15/
%G en
%F TVP_2005_50_4_a15
R. Vasudeva; G. Divanji. On almost sure behavior of stable subordinators over rapidly increasing sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 818-822. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a15/

[1] Gut A., “Law of the iterated logarithm for subsequences”, Probab. Math. Statist., 7:1 (1986), 27–58 | MR | Zbl

[2] Chover J., “A law of the iterated logarithm for stable summands”, Proc. Amer. Math. Soc., 17 (1966), 441–443 | DOI | MR | Zbl

[3] Mijnheer J. L., Sample Path Properties of Stable Processes, Math. Centre Tracts, 59, Mathematisch Centrum, Amsterdam, 1975 | MR | Zbl

[4] Pakshirajan R. P., Vasudeva R., “A law of the iterated logarithm for stable summands”, Trans. Amer. Math. Soc., 232 (1977), 33–42 | DOI | MR | Zbl

[5] Schwabe R., Gut A., “On the law of the iterated logarithm for rapidly increasing subsequences”, Math. Nachr., 178 (1996), 309–320 | DOI | MR | Zbl

[6] Vasudeva R., “Some almost sure results for stable subordinators”, Proceedings of the International Conference on Stochastic Processes (Cochin, India, 1996), ed. A. Krishnamoorphy, 1996, 125–130