@article{TVP_2005_50_4_a14,
author = {R. Jajte},
title = {Pointwise ergodic theorem for unbounded operators in~$\mathbf{L}_2$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {806--818},
year = {2005},
volume = {50},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a14/}
}
R. Jajte. Pointwise ergodic theorem for unbounded operators in $\mathbf{L}_2$. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 806-818. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a14/
[1] Alexits G., Convergence Problems of Orthogonal Series, Pergamon Press, New York, Oxford, Paris, 1961, 350 pp. | MR | Zbl
[2] Bingham N. H., “Summability methods and dependent strong laws”, Progr. Probab. Statist., 11 (1986), 291–300 | MR | Zbl
[3] Bingham N. H. Maejima M., “Summability methods and almost sure convergence”, Z. Wahrscheinlichkeitstheor. verw. Geb., 68:3 (1985), 383–392 | DOI | MR | Zbl
[4] Borel É., Leçons sur les séries divergentes, Gauthier-Villars, Paris, 1928, 260 pp.
[5] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982, 511 pp. | MR | Zbl
[6] Gaposhkin V. F., “Kriterii usilennogo zakona bolshikh chisel dlya klassov statsionarnykh v shirokom smysle protsessov i odnorodnykh sluchainykh polei”, Teoriya veroyatn. i ee primen., 22:2 (1977), 295–319 | MR | Zbl
[7] Gaposhkin V. F., “Ob individualnoi ergodicheskoi teoreme dlya normalnykh operatorov v $L_2$”, Funkts. analiz pril., 15:1 (1981), 18–22 | MR | Zbl
[8] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951, 504 pp.
[9] Jajte R., “Individual ergodic theorem for non-contractive normal operators”, Probab. Math. Statist., 22:1 (2002), 85–99 | MR | Zbl
[10] Nelson E., “Analytic vectors”, Ann. Math., 70 (1959), 572–615 | DOI | MR | Zbl
[11] Włodarski L., “Sur les méthodes continues de limitation du type de Borel”, Ann. Polon. Math., 4 (1958), 137–164 | MR
[12] Ulyanov P. L., “O svoistvakh funktsii iz klassov Zhevre”, Dokl. AN SSSR, 314:4 (1990), 793–797 | MR