Pointwise ergodic theorem for unbounded operators in $\mathbf{L}_2$
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 806-818 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A condition implying the strong law of large numbers for trajectories of a normal unbounded operator is given. The condition has been described in terms of a spectral measure. To embrace the case of unbounded operators we pass from the classical arithmetic (Cesàro) means to the Borel methods of summability.
Keywords: strong law of large numbers, individual ergodic theorem, unbounded normal operator, spectral measure, Borel methods of summability, almost sure convergence.
@article{TVP_2005_50_4_a14,
     author = {R. Jajte},
     title = {Pointwise ergodic theorem for unbounded operators in~$\mathbf{L}_2$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {806--818},
     year = {2005},
     volume = {50},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a14/}
}
TY  - JOUR
AU  - R. Jajte
TI  - Pointwise ergodic theorem for unbounded operators in $\mathbf{L}_2$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 806
EP  - 818
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a14/
LA  - en
ID  - TVP_2005_50_4_a14
ER  - 
%0 Journal Article
%A R. Jajte
%T Pointwise ergodic theorem for unbounded operators in $\mathbf{L}_2$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 806-818
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a14/
%G en
%F TVP_2005_50_4_a14
R. Jajte. Pointwise ergodic theorem for unbounded operators in $\mathbf{L}_2$. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 806-818. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a14/

[1] Alexits G., Convergence Problems of Orthogonal Series, Pergamon Press, New York, Oxford, Paris, 1961, 350 pp. | MR | Zbl

[2] Bingham N. H., “Summability methods and dependent strong laws”, Progr. Probab. Statist., 11 (1986), 291–300 | MR | Zbl

[3] Bingham N. H. Maejima M., “Summability methods and almost sure convergence”, Z. Wahrscheinlichkeitstheor. verw. Geb., 68:3 (1985), 383–392 | DOI | MR | Zbl

[4] Borel É., Leçons sur les séries divergentes, Gauthier-Villars, Paris, 1928, 260 pp.

[5] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982, 511 pp. | MR | Zbl

[6] Gaposhkin V. F., “Kriterii usilennogo zakona bolshikh chisel dlya klassov statsionarnykh v shirokom smysle protsessov i odnorodnykh sluchainykh polei”, Teoriya veroyatn. i ee primen., 22:2 (1977), 295–319 | MR | Zbl

[7] Gaposhkin V. F., “Ob individualnoi ergodicheskoi teoreme dlya normalnykh operatorov v $L_2$”, Funkts. analiz pril., 15:1 (1981), 18–22 | MR | Zbl

[8] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951, 504 pp.

[9] Jajte R., “Individual ergodic theorem for non-contractive normal operators”, Probab. Math. Statist., 22:1 (2002), 85–99 | MR | Zbl

[10] Nelson E., “Analytic vectors”, Ann. Math., 70 (1959), 572–615 | DOI | MR | Zbl

[11] Włodarski L., “Sur les méthodes continues de limitation du type de Borel”, Ann. Polon. Math., 4 (1958), 137–164 | MR

[12] Ulyanov P. L., “O svoistvakh funktsii iz klassov Zhevre”, Dokl. AN SSSR, 314:4 (1990), 793–797 | MR