A remark on the equality in Monge and Kantorovich problems
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 779-782
Cet article a éte moissonné depuis la source Math-Net.Ru
The aim of this paper is a generalization of the classic result on the equality between the Monge infimum and the Kantorovich minimum in the optimal mass transportation problem.
Mots-clés :
Monge's infimum, mass transportation problem
Keywords: Kantorovich's minimum, Souslin space.
Keywords: Kantorovich's minimum, Souslin space.
@article{TVP_2005_50_4_a10,
author = {A. A. Lipchyus},
title = {A remark on the equality in {Monge} and {Kantorovich} problems},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {779--782},
year = {2005},
volume = {50},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a10/}
}
A. A. Lipchyus. A remark on the equality in Monge and Kantorovich problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 779-782. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a10/
[1] Rachev S. T., Rüschendorf L., Mass Transportation Problems, v. I, Springer-Verlag, New York, 1998, 508 pp. | MR
[2] Pratelli A., On the equality between Monges's infimum and Kantorovich's minimum in optimal mass transportation, Preprint, Scuola Normale Superiore di Pisa, Pisa, 2004; Ann. Inst. H. Poincaré (to appear)
[3] Bogachev V. I., Osnovy teorii mery, v. 1, 2, “Regulyarnaya i khaoticheskaya dinamika”, M., Izhevsk, 2003; 2-е изд., 2005