Global regularity and estimates for solutions of parabolic equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 652-674

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a second-order parabolic operator $$ Lu(t,x):=\frac{\partial u(t,x)}{\partial t}+a^{ij}(t,x)\partial_{x_i}\partial_{x_j}u(t,x)+b^i(t,x)\partial_{x_i}u(t,x), $$ we consider the weak parabolic equation $L^{*}\mu=0$ for Borel probability measures on $(0,1)\times\mathbf{R}^d$. The equation is understood as the equality $$ \int_{(0,1)\timesR^d} Lu\,d\mu=0 $$ for all smooth functions $u$ with compact support in $(0,1)\timesR^d$. This equation is satisfied for the transition probabilities of the diffusion process associated with $L$. We show that under broad assumptions, $\mu$ has the form $\mu=\varrho(t,x)\,dt\,dx$, where the function $x\mapsto\varrho(t,x)$ is Sobolev, $|\nabla_x \varrho(x,t)|^2/\varrho(t,x)$ is Lebesgue integrable over $[0,\tau]\times\mathbf{R}^d$, and $\varrho\in L^p([0,\tau]\timesR^d)$ for all $p\in[1,+\infty)$ and $\tau1$. Moreover, a sufficient condition for the uniform boundedness of $\varrho$ on $[0,\tau]\timesR^d$ is given.
Keywords: parabolic equations for measures, transition probabilities, regularity of solutions of parabolic equations, estimates of solutions of parabolic equations.
@article{TVP_2005_50_4_a1,
     author = {V. I. Bogachev and M. R\"ockner and S. V. Shaposhnikov},
     title = {Global regularity and estimates for solutions of parabolic equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {652--674},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - M. Röckner
AU  - S. V. Shaposhnikov
TI  - Global regularity and estimates for solutions of parabolic equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 652
EP  - 674
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/
LA  - ru
ID  - TVP_2005_50_4_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A M. Röckner
%A S. V. Shaposhnikov
%T Global regularity and estimates for solutions of parabolic equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 652-674
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/
%G ru
%F TVP_2005_50_4_a1
V. I. Bogachev; M. Röckner; S. V. Shaposhnikov. Global regularity and estimates for solutions of parabolic equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 652-674. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/