@article{TVP_2005_50_4_a1,
author = {V. I. Bogachev and M. R\"ockner and S. V. Shaposhnikov},
title = {Global regularity and estimates for solutions of parabolic equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {652--674},
year = {2005},
volume = {50},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/}
}
TY - JOUR AU - V. I. Bogachev AU - M. Röckner AU - S. V. Shaposhnikov TI - Global regularity and estimates for solutions of parabolic equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 652 EP - 674 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/ LA - ru ID - TVP_2005_50_4_a1 ER -
V. I. Bogachev; M. Röckner; S. V. Shaposhnikov. Global regularity and estimates for solutions of parabolic equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 652-674. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/
[1] Bogachev V. I., Da Prato G., Röckner M., “Existence of solutions to weak parabolic equations for measures”, Proc. London Math. Soc., 88:3 (2004), 753–774 | DOI | MR | Zbl
[2] Bogachev V. I., Da Prato G., Röckner M., On solvability of weak parabolic equations for measures, Preprint, Reseach Center BiBoS, Bielefeld University, Bielefeld, 2005
[3] Bogachev V. I., Krylov N. V., Röckner M., “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11–12 (2001), 2037–2080 | DOI | MR | Zbl
[4] Stannat W., Time-dependent diffusion operators on $L^1$, Preprint SFB 343 No 00-080, Univ. Bielefeld, Bielefeld, 2000 | MR
[5] Bogachev V. I., Röckner M., “Regularity of invariant measures on finite- and infinite-dimensional spaces and applications”, J. Funct. Anal., 133:1 (1995), 168–223 | DOI | MR | Zbl
[6] Bogachev V. I., Krylov N. V., Röckner M., “Regularity of invariant measures: the case of non-constant diffusion part”, J. Funct. Anal., 138:1 (1996), 223–242 | DOI | MR | Zbl
[7] Bogachev V. I., Röckner M., Wang F.-Y., “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl., 80:2 (2001), 177–221 | DOI | MR | Zbl
[8] Metafune G., Pallara D., Rhandi A., “Global regularity of invariant measures”, J. Funct. Anal., 223:2 (2005), 396–424 | DOI | MR | Zbl
[9] Bogachev V. I., Krylov N. V., Rekner M., “Regulyarnost i globalnye otsenki plotnostei invariantnykh mer diffuzionnykh protsessov”, DAN, 405:5 (2005), 583–587 | MR | Zbl
[10] Bogachev V. I., Krylov N. V., Röckner M., Elliptic equations for measures: regularity and global bounds of densities, Preprint No 05-06-186, Research Center BiBoS, Bielefeld University, Bielefeld; J. Math. Pures Appl. (9), 85:6 (2006), 743–757 | MR | Zbl
[11] Carlen E. A., “Conservative diffusions”, Comm. Math. Phys., 94:3 (1984), 293–315 | DOI | MR | Zbl
[12] Cattiaux P., Fradon M., “Entropy, reversible diffusion processes, and Markov uniqueness”, J. Funct. Anal., 138:1 (1996), 243–272 | DOI | MR | Zbl
[13] Cattiaux P., Léonard C., “Minimization of the Kullback information of diffusion processes”, Ann. Inst. H. Poincaré, 30:1 (1994), 83–132 ; correction: ibid. 31:4 (1995), 705–707 | MR | Zbl | MR | Zbl
[14] Föllmer H., “Random fields and diffusion processes”, Lecture Notes in Math., 1362, 1988, 101–203 | MR | Zbl
[15] Nelson E., Quantum Fluctuations, Princeton Univ. Press, Princeton, 1985, 147 pp. | MR | Zbl
[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR