Global regularity and estimates for solutions of parabolic equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 652-674
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a second-order parabolic operator
$$
Lu(t,x):=\frac{\partial u(t,x)}{\partial t}+a^{ij}(t,x)\partial_{x_i}\partial_{x_j}u(t,x)+b^i(t,x)\partial_{x_i}u(t,x),
$$
we consider the weak parabolic equation $L^{*}\mu=0$ for Borel probability measures on $(0,1)\times\mathbf{R}^d$. The equation is understood as the equality
$$
\int_{(0,1)\timesR^d} Lu\,d\mu=0
$$
for all smooth functions $u$ with compact support in $(0,1)\timesR^d$. This equation is satisfied for the transition probabilities of the diffusion process associated with $L$. We show that under broad assumptions, $\mu$ has the form $\mu=\varrho(t,x)\,dt\,dx$, where the function $x\mapsto\varrho(t,x)$ is Sobolev, $|\nabla_x \varrho(x,t)|^2/\varrho(t,x)$ is Lebesgue integrable over $[0,\tau]\times\mathbf{R}^d$, and $\varrho\in L^p([0,\tau]\timesR^d)$ for all $p\in[1,+\infty)$ and $\tau1$. Moreover, a sufficient condition for the uniform boundedness of $\varrho$ on $[0,\tau]\timesR^d$ is given.
Keywords:
parabolic equations for measures, transition probabilities, regularity of solutions of parabolic equations, estimates of solutions of parabolic equations.
@article{TVP_2005_50_4_a1,
author = {V. I. Bogachev and M. R\"ockner and S. V. Shaposhnikov},
title = {Global regularity and estimates for solutions of parabolic equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {652--674},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/}
}
TY - JOUR AU - V. I. Bogachev AU - M. Röckner AU - S. V. Shaposhnikov TI - Global regularity and estimates for solutions of parabolic equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 652 EP - 674 VL - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/ LA - ru ID - TVP_2005_50_4_a1 ER -
%0 Journal Article %A V. I. Bogachev %A M. Röckner %A S. V. Shaposhnikov %T Global regularity and estimates for solutions of parabolic equations %J Teoriâ veroâtnostej i ee primeneniâ %D 2005 %P 652-674 %V 50 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/ %G ru %F TVP_2005_50_4_a1
V. I. Bogachev; M. Röckner; S. V. Shaposhnikov. Global regularity and estimates for solutions of parabolic equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 652-674. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a1/