About the number of step functions with restrictions
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 625-651 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an asymptotic formula for the number of scaled step functions with restrictions on the length and height of steps (shapes of Young diagrams) of a given area in the neighborhood of a given curve. This allows us to find the asymptotics of the whole number of such functions and find the limit shape — the curve of concentration of the step functions.
Keywords: large deviations, random walk, Young diagram.
@article{TVP_2005_50_4_a0,
     author = {R. Ahlswede and V. M. Blinovskii},
     title = {About the number of step functions with restrictions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {625--651},
     year = {2005},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a0/}
}
TY  - JOUR
AU  - R. Ahlswede
AU  - V. M. Blinovskii
TI  - About the number of step functions with restrictions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 625
EP  - 651
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a0/
LA  - ru
ID  - TVP_2005_50_4_a0
ER  - 
%0 Journal Article
%A R. Ahlswede
%A V. M. Blinovskii
%T About the number of step functions with restrictions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 625-651
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a0/
%G ru
%F TVP_2005_50_4_a0
R. Ahlswede; V. M. Blinovskii. About the number of step functions with restrictions. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 625-651. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a0/

[1] Vershik A. M., “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | MR | Zbl

[2] Chandrasekkharan K., Arifmeticheskie funktsii, Nauka, M., 1975, 272 pp. | MR

[3] Blinovskii V. M., “Printsip bolshikh uklonenii dlya granitsy sluchainoi diagrammy Yunga”, Problemy peredachi informatsii, 35:1 (1999), 61–74 | MR

[4] Blinovsky V. M., “Large deviations problem for the shape of a random Young diagram with restrictions”, Numbers, Information and Complexity, eds. I. Althöfer et al., Kluwer, Dordrecht, 2000, 473–488 | MR | Zbl

[5] Dembo A., Vershik A., Zeitouni O., “Large deviations for integer partitions”, Markov Process. Related Fields, 6:2 (2000), 147–179 | MR | Zbl

[6] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993, 346 pp. | MR | Zbl

[7] Gelfand I. M., Fomin S. V., Variatsionnoe ischislenie, Fizmatgiz, M., 1961, 228 pp. | MR

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, v. 2, Mera, integral Lebega, gilbertovo prostranstvo, Izd-vo Mosk. un-ta, M., 1960, 118 pp. | MR