About the number of step functions with restrictions
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 625-651
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an asymptotic formula for the number of scaled step functions with restrictions on the length and height of steps (shapes of Young diagrams) of a given area in the neighborhood of a given curve. This allows us to find the asymptotics of the whole number of such functions and find the limit shape — the curve of concentration of the step functions.
Keywords:
large deviations, random walk, Young diagram.
@article{TVP_2005_50_4_a0,
author = {R. Ahlswede and V. M. Blinovskii},
title = {About the number of step functions with restrictions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {625--651},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a0/}
}
R. Ahlswede; V. M. Blinovskii. About the number of step functions with restrictions. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 4, pp. 625-651. http://geodesic.mathdoc.fr/item/TVP_2005_50_4_a0/