Maximal branching processes with non-negative values
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 564-570
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of the maximal branching processes introduced by Lamperti from the domain $\mathbf{Z}_+$ to $\mathbf{R}_+$ is proved. Some properties of these processes are investigated, an ergodic theorem is proved, and examples are given. Applications of the maximal branching processes to the queueing theory are given.
Keywords:
maximal branching processes, ergodic theorem, monotonicity with respect to parameters, gated infinite-server systems.
Mots-clés : association
Mots-clés : association
@article{TVP_2005_50_3_a9,
author = {A. V. Lebedev},
title = {Maximal branching processes with non-negative values},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {564--570},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a9/}
}
A. V. Lebedev. Maximal branching processes with non-negative values. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 564-570. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a9/