Maximal branching processes with non-negative values
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 564-570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the maximal branching processes introduced by Lamperti from the domain $\mathbf{Z}_+$ to $\mathbf{R}_+$ is proved. Some properties of these processes are investigated, an ergodic theorem is proved, and examples are given. Applications of the maximal branching processes to the queueing theory are given.
Keywords: maximal branching processes, ergodic theorem, monotonicity with respect to parameters, gated infinite-server systems.
Mots-clés : association
@article{TVP_2005_50_3_a9,
     author = {A. V. Lebedev},
     title = {Maximal branching processes with non-negative values},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {564--570},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a9/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Maximal branching processes with non-negative values
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 564
EP  - 570
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a9/
LA  - ru
ID  - TVP_2005_50_3_a9
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Maximal branching processes with non-negative values
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 564-570
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a9/
%G ru
%F TVP_2005_50_3_a9
A. V. Lebedev. Maximal branching processes with non-negative values. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 564-570. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a9/

[1] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989, 392 pp. | MR

[2] Galambosh Ya., Asimptoticheskaya teoriya ekstremalnykh poryadkovykh statistik, Nauka, M., 1984, 304 pp. | MR

[3] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp. | MR

[4] Vatutin V. A., Zubkov A. M., “Vetvyaschiesya protsessy. I”, Itogi nauki i tekhniki. Ser. Teoriya veroyatn. Matem. statist. Teoret. kibernetika, 23, VINITI, M., 1985, 3–67 | MR

[5] Browne S., Coffman E. G. Jr., Gilbert E. N., Wright P. E., “The gated infinite-server queue: uniform service times”, SIAM J. Appl. Math., 52:6 (1992), 1751–1762 | DOI | MR | Zbl

[6] Lamperti J., “Maximal branching processes and “long-range percolation””, J. Appl. Probab., 7:1 (1970), 89–98 | DOI | MR | Zbl

[7] Lamperti J., “Remarks on maximal branching processes”, Teoriya veroyatn. i ee primen., 17:1 (1972), 46–54 | MR | Zbl

[8] Irzhina M., “Vetvyaschiesya sluchainye protsessy s nepreryvnym prostranstvom sostoyanii”, Teoriya veroyatn. i ee primen., 4:4 (1959), 482–484

[9] Esary J. D., Prochan F., Walkup D. W., “Association of random variables, with applications”, Ann. Math. Statist., 38:5 (1967), 1466–1474 | DOI | MR | Zbl

[10] Shtoiyan D., Kachestvennye svoistva i otsenki stokhasticheskikh modelei, Mir, M., 1979, 268 pp.

[11] Bulinskii A. V., Vronskii M. A., “Statisticheskii variant tsentralnoi predelnoi teoremy dlya assotsiirovannykh sluchainykh polei”, Fundam. prikl. matem., 2:4 (1996), 999–1018 | MR

[12] Lebedev A. V., “Ekstremumy polei drobovogo shuma v sluchae pravilno menyayuschikhsya khvostov”, Teoriya veroyatn. i ee primen., 47:4 (2002), 790–794 | MR

[13] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, URSS, M., 1999, 440 pp. | MR

[14] Bhattacharya R. N., Lee C., “Ergodicity of nonlinear first order autoregressive models”, J. Theoret. Probab., 8:1 (1995), 207–219 | DOI | MR | Zbl

[15] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp. | MR