On the accuracy of the normal approximation. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 555-564 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates are presented for the asymptotically exact constants in the estimates of the accuracy of the normal approximation for the distributions of sums of independent identically distributed random variables with finite moments of order $2+\delta$, $0<\delta<1$. Refined practically applicable estimates of the accuracy of the normal approximation are constructed in which the right-hand side is a sum of two summands, the first summand being the Lyapunov fraction with the absolute constant close to the asymptotically exact one, whereas the second summand decreases faster than $n^{-\delta/2}$. Explicit estimates and special “expansions” are given for the second summand.
Keywords: central limit theorem, normal approximation, Berry–Esseen inequality, convergence rate estimate, asymptotically exact constant.
@article{TVP_2005_50_3_a8,
     author = {V. Yu. Korolev and I. G. Shevtsova},
     title = {On the accuracy of the normal {approximation.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {555--564},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a8/}
}
TY  - JOUR
AU  - V. Yu. Korolev
AU  - I. G. Shevtsova
TI  - On the accuracy of the normal approximation. II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 555
EP  - 564
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a8/
LA  - ru
ID  - TVP_2005_50_3_a8
ER  - 
%0 Journal Article
%A V. Yu. Korolev
%A I. G. Shevtsova
%T On the accuracy of the normal approximation. II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 555-564
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a8/
%G ru
%F TVP_2005_50_3_a8
V. Yu. Korolev; I. G. Shevtsova. On the accuracy of the normal approximation. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 555-564. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a8/

[1] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem, Nauka, M., 1982, 286 pp.

[2] Zolotarev V. M., “Absolyutnaya otsenka ostatochnogo chlena v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 11:1 (1966), 108–119 | MR | Zbl

[3] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 415 pp. | MR

[4] Korolev V. Yu., Shevtsova I. G., “O tochnosti normalnoi approksimatsii. I”, Teoriya veroyatn. i ee primen., 50:2 (2005), 353–366 | MR

[5] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.

[6] Matskyavichyus V. K., “O nizhnei otsenke skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 28:3 (1983), 565–569 | MR | Zbl

[7] Osipov L. V., “Utochnenie teoremy Lindeberga”, Teoriya veroyatn. i ee primen., 11:2 (1966), 339–342 | MR | Zbl

[8] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[10] Chistyakov G. P., “Novoe asimptoticheskoe razlozhenie i asimptoticheski nailuchshie postoyannye v teoreme Lyapunova. I”, Teoriya veroyatn. i ee primen., 46:2 (2001), 326–344 | MR | Zbl

[11] Shiganov I. S., “Ob utochnenii verkhnei konstanty v ostatochnom chlene tsentralnoi predelnoi teoremy”, Problemy ustoichivosti stokhasticheskikh modelei, Trudy VNIISI, 1982, 109–115 | MR | Zbl

[12] Bentkus V., “On the asymptotcvical behavior of the constant in the Berry–Esseen inequality”, J. Theoret. Probab., 7:2 (1994), 211–224 | DOI | MR | Zbl

[13] Esseen C.-G., “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | MR

[14] Paditz L., “Über eine globale Fehlerabschätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochschule für Verkehrswesen “Friedrich List” Dresden, 33:2 (1986), 399–404 | MR | Zbl

[15] Paditz L., “On the error-bound in the nonuniform version of Esseen's inequality in the $L_p$-metric”, Statistics, 27:3–4 (1996), 379–394 | DOI | MR | Zbl

[16] Tysiak W., Gleichmäßige und nicht-gleichmäßige Berry–Esseen–Abschätzungen, Dissertation, Wuppertal, 1983 | Zbl