Simple random measures and simple processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 533-548 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple random measure is a finite sum of random measures with disjoint supports. A type of simple random measure which is induced by a multivariate random measure $(\Phi_1,\dots,\Phi_m)$ and measurable mappings $T_1,\dots,T_m$ is introduced and studied. Interestingly it gives rise to introducing a class of processes, called simple, that include stationary processes and discrete time periodically correlated processes. This study involves spectral domain and time domain characterizations and simulation. The role of spectral kernels in analysis of nonstationary processes is also discussed.
Keywords: random measure, simple random measure, simple processes, Cholesky decomposition
Mots-clés : spectral kernel, spectral domain, time domain, simulation.
@article{TVP_2005_50_3_a6,
     author = {A. Soltani and A. Parvardeh},
     title = {Simple random measures and simple processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {533--548},
     year = {2005},
     volume = {50},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a6/}
}
TY  - JOUR
AU  - A. Soltani
AU  - A. Parvardeh
TI  - Simple random measures and simple processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 533
EP  - 548
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a6/
LA  - en
ID  - TVP_2005_50_3_a6
ER  - 
%0 Journal Article
%A A. Soltani
%A A. Parvardeh
%T Simple random measures and simple processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 533-548
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a6/
%G en
%F TVP_2005_50_3_a6
A. Soltani; A. Parvardeh. Simple random measures and simple processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 533-548. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a6/

[1] Brockwell P. J., Davis R. A., Time Series: Theory and Methods, Springer-Verlag, New York, 1991, 577 pp. | MR

[2] Gardner W. A., Cyclostationarity in Communications and Signal Processing, IEEE Press, New York, 1994

[3] Gladyshev E. G., “O periodicheski korrelirovannykh sluchainykh posledovatelnostyakh”, Dokl. AN SSSR, 137:5 (1961), 1026–1029 | Zbl

[4] Miamee A. G., Soltani A. R., On spectral analysis of periodically correlated processes, Technical Report, Hampton University, 1994

[5] Nematollahi A. R., Soltani A. R., “Discrete time periodically correlated Markov processes”, Probab. Math. Statist., 20:1 (2000), 127–140 | MR | Zbl

[6] Priestley M. B., “Evolutionary spectra and nonstationary processes”, J. Roy. Statist. Soc. Ser. B, 27 (1965), 204–237 | MR | Zbl

[7] Priestley M. B., Spectral Analysis and Time Series, Academic Press, London, New York, 1989, 890 pp. | Zbl

[8] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Nauka, M., 1963, 284 pp. | MR

[9] Soltani A. R., Shishebor Z., “A spectral representation for weakly periodic sequences of bounded linear transformations”, Acta Math. Hungar., 80:3 (1998), 265–270 | DOI | MR | Zbl

[10] Soltani A. R., Shishebor Z., “Weakly periodic sequences of bounded linear transformations: A spectral characterization”, Georgian Math. J., 6:1 (1999), 91–98 | DOI | MR | Zbl

[11] Soltani A. R., “A characterization theorem for stable random measures”, Stochastic Anal. Appl., 18:2 (2000), 299–308 | DOI | MR | Zbl

[12] Subba Rao T., “The fitting of non-stationary time-series models with time-dependent parameter”, J. Roy. Statist. Soc. Ser. B, 32 (1970), 312–322 | MR | Zbl