Uniform integrability condition in strong ration limit theorems
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 517-532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a given Markov chain with a measurable state space $(E,\mathscr{E})$, transition operator $P$, and fixed measurable function $f\geq 0$, under necessary conditions, we consider variables $\mu(f_n)$, where $n\ge 1$ is sufficiently large, $f_n=P^nf/\nu(P^nf)$, and $\mu$ and $\nu$ are probability measures on $\mathscr{E}$. For a wide class of situations we propose sufficient and often necessary and sufficient conditions for the convergence of $f_n$ to 1 as $n\to\infty$. These results differ from the results of Orey, Lin, Nummelin, and others by replacing the traditional recurrent conditions of a chain or the uniform boundedness of the functions $f_n$ and the minorizing condition of [E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, Cambridge, UK, 1984] with more flexible assumptions, among which the uniform integrability of functions $f_n$ with respect to some collection of measures plays a particular role. Our theorems imply a weak and often a strong convergence of these functions to $\varphi\equiv 1$ in respective spaces of a summable function.
Mots-clés : Markov chain
Keywords: strong limit theorem for ratios.
@article{TVP_2005_50_3_a5,
     author = {M. G. Shur},
     title = {Uniform integrability condition in strong ration limit theorems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {517--532},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a5/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - Uniform integrability condition in strong ration limit theorems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 517
EP  - 532
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a5/
LA  - ru
ID  - TVP_2005_50_3_a5
ER  - 
%0 Journal Article
%A M. G. Shur
%T Uniform integrability condition in strong ration limit theorems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 517-532
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a5/
%G ru
%F TVP_2005_50_3_a5
M. G. Shur. Uniform integrability condition in strong ration limit theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 517-532. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a5/

[1] Dellacherie C., Meyer P.-A., Probabilités et potentiel, Hermann, Paris, 1975, 291 pp. | MR | Zbl

[2] Guivarc'h Y., “Théorèmes quotients pour les marches aléatoires”, Astérisque, 74, 1980, 15–28 | MR

[3] Lin M., “Strong ratio limit theorems for mixing Markov operators”, Ann. Inst. H. Poincaré, 12:2 (1976), 181–191 | MR | Zbl

[4] Orey S., Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, London, 1971, 108 pp. | MR | Zbl

[5] Danford R., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, v. 1, IL, M., 1962, 895 pp.

[6] Molchanov S. A., “Predelnaya teorema dlya otnoshenii perekhodnykh veroyatnostei”, Uspekhi matem. nauk, 22:2 (1967), 124–125 | MR

[7] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[8] Nummelin E., Obschie neprivodimye tsepi Markova i neotritsatelnye operatory., Mir, M., 1989, 207 pp. | MR

[9] Revyuz D., Tsepi Markova, RFFI, M., 1997, 431 pp.

[10] Chzhun K.-L., Odnorodnye tsepi Markova, Mir, M., 1964, 421 pp.

[11] Shur M. G., “Asimptoticheskie svoistva stepenei polozhitelnykh operatorov. I, II”, Teoriya veroyatn. i ee primen., 29:4 (1984), 692–702 ; 30:2 (1985), 241–251 | MR | Zbl | MR

[12] Shur M. G., “K predelnym teoremam dlya otnoshenii, porozhdennykh sluchainymi bluzhdaniyami v odnorodnykh prostranstvakh. I, II”, Teoriya veroyatn. i ee primen., 33:4 (1988), 706–719 ; 34:3 (1989), 516–527 | MR | MR | Zbl

[13] Shur M. G., “Ob uslovii Lina v silnykh predelnykh teoremakh dlya otnoshenii”, Matem. zametki, 75:6 (2004), 927–940 | MR | Zbl

[14] Shur M. G., “New ratio limit theorems for Markov chains”, Amer. Math. Soc. Transl. Ser. 2, 207, 2002, 203–212 | MR | Zbl

[15] Woess W., “Random walks on infinite graphs and groups – a survey on selected topics”, Bull. London Math. Soc., 26:1 (1994), 1–60 | DOI | MR | Zbl

[16] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.