The uniform distribytion on sphere in $R^s$. I. Properties of projections
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 501-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The distribution law of the first $k$ coordinates of a point uniformly distributed over a high dimensional sphere and the distribution law of $k$ independent standard normal variables, as $n\to\infty$ with $k$ fixed, are considered. The main result of this paper is a lower bound on the variational distance. The well-known upper bound due to Diaconis and Freedman has been made more precise.
Mots-clés : variational distance
Keywords: uniform distribution on a sphere.
@article{TVP_2005_50_3_a4,
     author = {V. I. Khokhlov},
     title = {The uniform distribytion on sphere in~$R^s$. {I.~Properties} of projections},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {501--516},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a4/}
}
TY  - JOUR
AU  - V. I. Khokhlov
TI  - The uniform distribytion on sphere in $R^s$. I. Properties of projections
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 501
EP  - 516
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a4/
LA  - ru
ID  - TVP_2005_50_3_a4
ER  - 
%0 Journal Article
%A V. I. Khokhlov
%T The uniform distribytion on sphere in $R^s$. I. Properties of projections
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 501-516
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a4/
%G ru
%F TVP_2005_50_3_a4
V. I. Khokhlov. The uniform distribytion on sphere in $R^s$. I. Properties of projections. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 501-516. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a4/

[1] Diaconis P., Freedman D., “A dozen de Finetty-style results: in search a theory”, Ann. Inst. H. Poincare, 23 (1987), 397–423 | MR | Zbl

[2] Stam A. J., “Limit theorems for uniform distributions on high dimensional Euclidean spaces”, J. Appl. Probab., 19 (1982), 221–228 | DOI | MR | Zbl

[3] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 306 pp. | MR

[4] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 331 pp. | Zbl

[5] Kats M., Veroyatnost i smezhnye voprosy v fizike, 2-e izd., URSS, M., 2002, 273 pp.

[6] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. III, 5-e izd., Fizmatlit, M., 1969

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Fizmatlit, M., 1981, 798 pp. | MR

[8] Prudnikov A. P., Brychkov Yu. A., Marichev O. M., Integraly i ryady. Spetsialnye funktsii, Fizmatlit, M., 1983, 750 pp. | MR | Zbl

[9] Vatson G., Teoriya besselevykh funktsii. 4.1, IL, M., 1949, 798 pp.

[10] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp. | MR

[11] Bochner S., Harmonic Analysis and the Theory of Probability, Univ. California Press, Berkeley, Los Angeles, 1955, 176 pp. | MR

[12] Bokhner S., Lektsii ob integralakh Fure, Fizmatgiz, M., 1962

[13] Kolmogorov A. N., “Nekotorye raboty poslednikh let v oblasti predelnykh teorem teorii veroyatnostei”, Vestnik MGU, 10 (1953), 29–38 ; Колмогоров A. Н., Теория вероятностей и математическая статистика, Наука, М., 1986, 373–383 | Zbl | MR

[14] Shiryaev A. N., Veroyatnost, 2-e izd., Nauka, M., 1989, 640 pp. | MR

[15] Sheffé H., “A useful convergence theorem for probability distributions”, Ann. Math. Statist., 18 (1947), 434–438 | DOI | MR

[16] Kulikova A. A., Prokhorov Yu. V., “Raspredelenie drobnykh dolei sluchainykh vektorov: gaussovskii sluchai. I”, Teoriya veroyatn. i ee primen., 48:2 (2003), 399–402 | MR | Zbl

[17] Bolshev L. N., Smirnov N. V., Tablitsy matematicheskoi statistiki, 3-e izd., Nauka, M., 1983, 416 pp. | MR