The uniform distribytion on sphere in~$R^s$. I.~Properties of projections
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 501-516
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The distribution law of the first $k$ coordinates of a point uniformly distributed over a high dimensional sphere and the distribution law of $k$ independent standard normal variables, as $n\to\infty$ with $k$ fixed, are considered. The main result of this paper is a lower bound on the variational distance. The well-known upper bound due to Diaconis and Freedman has been made more precise.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
variational distance
Keywords: uniform distribution on a sphere.
                    
                  
                
                
                Keywords: uniform distribution on a sphere.
@article{TVP_2005_50_3_a4,
     author = {V. I. Khokhlov},
     title = {The uniform distribytion on sphere in~$R^s$. {I.~Properties} of projections},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {501--516},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a4/}
}
                      
                      
                    V. I. Khokhlov. The uniform distribytion on sphere in~$R^s$. I.~Properties of projections. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 501-516. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a4/
