Martingale selection problem in the case of finite disrete time
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 480-500 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a multivalued stochastic process specified on a filtered probability space. Assuming that the values of the process are convex we establish a criterion for the existence of an adapted sequence of selectors that can be transformed into a martingale by an equivalent change of measure. The criterion has a geometric nature and is expressed in terms of the supports of the regular conditional upper distributions of the elements of the multivalued process.
Keywords: martingale measures, multivalued mappings, measurable choice, supports of regular conditional distributions, Castaing's representation.
@article{TVP_2005_50_3_a3,
     author = {D. B. Rokhlin},
     title = {Martingale selection problem in the case of finite disrete time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {480--500},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a3/}
}
TY  - JOUR
AU  - D. B. Rokhlin
TI  - Martingale selection problem in the case of finite disrete time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 480
EP  - 500
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a3/
LA  - ru
ID  - TVP_2005_50_3_a3
ER  - 
%0 Journal Article
%A D. B. Rokhlin
%T Martingale selection problem in the case of finite disrete time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 480-500
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a3/
%G ru
%F TVP_2005_50_3_a3
D. B. Rokhlin. Martingale selection problem in the case of finite disrete time. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 480-500. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a3/

[1] Harrison J. M., Pliska S. R., “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl

[2] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl

[3] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl

[4] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, Fazis, M., 1998, 528 pp.

[5] Jouini E., Kallal H., “Martingales and arbitrage in securities markets with transaction costs”, J. Econom. Theory, 66:1 (1995), 178–197 | DOI | MR | Zbl

[6] Kabanov Y., Stricker C., “The Harrison–Pliska arbitrage pricing theorem under transaction costs”, J. Math. Econom., 35:2 (2001), 185–196 | DOI | MR | Zbl

[7] Kabanov Y., Rásonyi M., Stricker C., “No-arbitrage criteria for financial markets with efficient friction”, Finance Stoch., 6:3 (2002), 371–382 | DOI | MR | Zbl

[8] Schachermayer W., “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl

[9] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 400 pp.

[10] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[11] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primeneniya v matematike i ekonomike, Nauka, M., 1985, 352 pp. | MR

[12] Evstigneev I. V., “Teoremy izmerimogo vybora i veroyatnostnye modeli upravleniya v obschikh topologicheskikh prostranstvakh”, Matem. sb., 131:1 (1986), 27–39 | MR | Zbl

[13] Bogachev V. I., Osnovy teorii mery, v. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M., Izhevsk, 2003, 576 pp.

[14] Rokhlin D. B., “Rasshirennaya versiya teoremy Dalanga–Mortona–Villindzhera pri vypuklykh ogranicheniyakh na portfel”, Teoriya veroyatn. i ee primen., 49:3 (2004), 503–521 | MR | Zbl

[15] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl

[16] Beer G., “A Polish topology for the closed subsets of a Polish space”, Proc. Amer. Math. Soc., 113:4 (1991), 1123–1133 | DOI | MR | Zbl

[17] Barbati A., Beer G., Hess C., “The Hausdorff metric topology, the Attouch–Wets topology, and the measurability of set-valued functions”, J. Convex Anal., 1:1 (1994), 107–119 | MR | Zbl

[18] Zsilinszky L., “Polishness of the Wijsman topology revisited”, Proc. Amer. Math. Soc., 126:12 (1998), 3763–3765 | DOI | MR | Zbl

[19] Hess C., “Loi de probabilité des ensembles aléatoires à valeurs fermées dans un espace métrique séparable”, C. R. Acad. Sci. Paris, 296:21 (1983), 883–886 | MR | Zbl

[20] Hess C., Contributions à l'étude de la mesurabilité, de la loi de probabilité, et de la convergence des multifunctions, Thèse d'état, Université Montpellier II, Montpellier, 1986

[21] Shiryaev A. N., Veroyatnost, Nauka, M., 1980, 576 pp. | MR | Zbl

[22] Dempster A. P., “Upper and lower probabilities induced by a multivalued mapping”, Ann. Math. Statist., 38:2 (1967), 325–339 | DOI | MR | Zbl

[23] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vysshaya shkola, M., 1979, 336 pp. | Zbl

[24] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973, 469 pp.