Martingale selection problem in the case of finite disrete time
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 480-500
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a multivalued stochastic process specified on a filtered probability space. Assuming that the values of the process are convex we establish a criterion for the existence of an adapted sequence of selectors that can be transformed into a martingale by an equivalent change of measure. The criterion has a geometric nature and is expressed in terms of the supports of the regular conditional upper distributions of the elements of the multivalued process.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
martingale measures, multivalued mappings, measurable choice, supports of regular conditional distributions, Castaing's representation.
                    
                  
                
                
                @article{TVP_2005_50_3_a3,
     author = {D. B. Rokhlin},
     title = {Martingale selection problem in the case of finite disrete time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {480--500},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a3/}
}
                      
                      
                    D. B. Rokhlin. Martingale selection problem in the case of finite disrete time. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 480-500. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a3/
