@article{TVP_2005_50_3_a2,
author = {S. V. Nagaev and V. I. Vakhtel'},
title = {On the local limit theorem for critical {Galton{\textendash}Watson} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {457--479},
year = {2005},
volume = {50},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a2/}
}
S. V. Nagaev; V. I. Vakhtel'. On the local limit theorem for critical Galton–Watson process. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 457-479. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a2/
[1] Zolotarev V. M., “Utochnenie ryada teorem teorii vetvyaschikhsya sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 2:2 (1957), 256–266 | MR | Zbl
[2] Kesten H., Ney P., Spitzer F., “The Galton–Watson process with mean one and finite variance”, Teoriya veroyatn. i ee primen., 11:4 (1966), 579–611 | MR | Zbl
[3] Vatutin V. A., “Lokalnaya predelnaya teorema dlya kriticheskikh vetvyaschikhsya protsessov Bellmana–Kharrisa”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 158, 1981, 9–30 | MR | Zbl
[4] Chistyakov V. P., “Lokalnye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 2:3 (1957), 360–374 | MR | Zbl
[5] Athreya K. B., Ney P., Branching Processes, Springer-Verlag, New York, Heidelberg, 1972, 287 pp. | MR | Zbl
[6] Nagaev S. V., Mukhamedkhanova R., “Nekotorye predelnye teoremy iz teorii vetvyaschikhsya protsessov”, Predelnye teoremy i statisticheskie vyvody, Fan, Tashkent, 1966, 90–112 | MR
[7] Topchii V. A., “Lokalnaya predelnaya teorema dlya kriticheskikh protsessov Bellmana–Kharrisa s diskretnym vremenem”, Predelnye teoremy teorii veroyatnostei i smezhnye voprosy, Trudy In-ta matematiki, 1, Nauka, Novosibirsk, 1982, 97–122 | MR
[8] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp. | MR
[9] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967, 376 pp. | MR
[10] Nagaev S. V., “Otsenka pogreshnosti priblizheniya ustoichivymi zakonami. I”, Teoriya imov. i matem. statist., 55 (1997), 145–160 | MR
[11] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1967, 498 pp. | MR