A remark on a large deviation theorem for Markov chain with a finite number of states
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 612-622 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the classic problem of large deviations for sums of random variables defined on the states of homogeneous Markov chain with finite phase space. The exact asymptotics for probabilities of large deviations of order $O(\sqrt n)$ is established. The proof is based on application of a local theorem of a new type.
Keywords: conjugate distribution, local theorem, monotone $\varepsilon$-approximation.
Mots-clés : spectrum perturbation
@article{TVP_2005_50_3_a16,
     author = {Z. Szewczak},
     title = {A remark on a large deviation theorem for {Markov} chain with a finite number of states},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {612--622},
     year = {2005},
     volume = {50},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a16/}
}
TY  - JOUR
AU  - Z. Szewczak
TI  - A remark on a large deviation theorem for Markov chain with a finite number of states
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 612
EP  - 622
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a16/
LA  - en
ID  - TVP_2005_50_3_a16
ER  - 
%0 Journal Article
%A Z. Szewczak
%T A remark on a large deviation theorem for Markov chain with a finite number of states
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 612-622
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a16/
%G en
%F TVP_2005_50_3_a16
Z. Szewczak. A remark on a large deviation theorem for Markov chain with a finite number of states. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 612-622. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a16/

[1] Bretagnolle J., Dacunha-Castelle D., “Théorèmes limites à distance finie pour les marches aléatories”, Ann. Inst. H. Poincaré, 4:1 (1968), 25–73 | MR | Zbl

[2] Bryc W., “On large deviations for uniformly strong mixing sequences”, Stochastic Process. Appl., 41:2 (1992), 191–202 | DOI | MR | Zbl

[3] Chung K. L., Markov Chains with Stationary Transition Probabilities, Springer-Verlag, New York, 1967, 301 pp. | MR | Zbl

[4] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993, 346 pp. | MR | Zbl

[5] Feller W., “On regular variation and local limit theorems”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Part 1 (Berkeley, 1965/66), v. II, ed. J. Neyman, Univ. California Press, Berkeley, 1967, 373–388 | MR | Zbl

[6] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 656 pp. | MR

[7] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl

[9] Lankaster P., Teoriya matrits, Nauka, M., 1982, 269 pp. | MR

[10] Lukach E., Kharakteristicheskie funktsii, Nauka, M., 1979, 423 pp. | MR

[11] Nagaev A. V., “Lokalnaya predelnaya teorema dlya chisla vosstanovlenii”, Litov. matem. sb., 10:1 (1970), 109–119 | MR | Zbl

[12] Nagaev S. V., “Nekotorye predelnye teoremy dlya odnorodnykh tsepei Markova”, Teoriya veroyatn. i ee primen., 2:4 (1957), 389–416 | MR

[13] Nagaev S. V., “Utochnenie predelnykh teorem dlya odnorodnykh tsepei Markova”, Teoriya veroyatn. i ee primen., 6:1 (1961), 67–86 | MR | Zbl

[14] Nagaev S. V., “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl

[15] Scheffel P., v. Weizsäcker H., “On risk rates and large deviations in finite Markov chain experiments”, Math. Methods Statist., 6:3 (1997), 293–312 | MR | Zbl

[16] Shepp L. A., “A local limit theorem”, Ann. Math. Statist., 35:1 (1964), 419–423 | DOI | MR | Zbl

[17] Sirazhdinov S. Kh., Formanov Sh. K., Predelnye teoremy dlya summ sluchainykh vektorov, svyazannykh v tsep Markova, Fan, Tashkent, 1979, 171 pp. | MR

[18] Stone C. J., “A local limit theorem for nonlattice multidimensional distribution functions”, Ann. Math. Statist., 36:2 (1965), 546–551 | DOI | MR | Zbl