A remark on a large deviation theorem for Markov chain with a finite number of states
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 612-622
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the classic problem of large deviations for sums of random variables defined on the states of homogeneous Markov chain with finite phase space. The exact asymptotics for probabilities of large deviations of order $O(\sqrt n)$ is established. The proof is based on application of a local theorem of a new type.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
conjugate distribution, local theorem, monotone $\varepsilon$-approximation.
Mots-clés : spectrum perturbation
                    
                  
                
                
                Mots-clés : spectrum perturbation
@article{TVP_2005_50_3_a16,
     author = {Z. Szewczak},
     title = {A remark on a large deviation theorem for {Markov} chain with a finite number of states},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {612--622},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a16/}
}
                      
                      
                    TY - JOUR AU - Z. Szewczak TI - A remark on a large deviation theorem for Markov chain with a finite number of states JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 612 EP - 622 VL - 50 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a16/ LA - en ID - TVP_2005_50_3_a16 ER -
Z. Szewczak. A remark on a large deviation theorem for Markov chain with a finite number of states. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 612-622. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a16/
