The Chover-type law of the iterated logarithm for certain power series
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 605-612
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{p_n,\ n\geq 0\}$ be a sequence of real numbers with $p_n\sim R(n)$, $R(\cdot)$ a regular varying function with index greater than $-1/\alpha$ $(0\alpha2)$. We prove the Chover-type law of the iterated logarithm for the $(J_p)$ power transform of sequence $\{X_n,\,n\geq 0\}$ of independent identically distributed stable random variables with exponent $\alpha$.
Keywords:
summability method, law of iterated logarithm.
Mots-clés : stable distribution
Mots-clés : stable distribution
@article{TVP_2005_50_3_a15,
author = {Ch. Pingyan},
title = {The {Chover-type} law of the iterated logarithm for certain power series},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {605--612},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a15/}
}
Ch. Pingyan. The Chover-type law of the iterated logarithm for certain power series. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 605-612. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a15/