Mots-clés : stable distribution
@article{TVP_2005_50_3_a15,
author = {Ch. Pingyan},
title = {The {Chover-type} law of the iterated logarithm for certain power series},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {605--612},
year = {2005},
volume = {50},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a15/}
}
Ch. Pingyan. The Chover-type law of the iterated logarithm for certain power series. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 605-612. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a15/
[1] Chover J., “A law of the iterated logarithm for stable summands”, Proc. Amer. Math. Soc., 17 (1966), 441–443 | DOI | MR | Zbl
[2] Pakshirajan R. P., Vasudeva R., “A law of the iterated logarithm for stable summands”, Trans. Amer. Math. Soc., 232 (1977), 33–42 | DOI | MR | Zbl
[3] Vasudeva R., Divanji G., “LIL for delayed sums under a non-identically distributed setup”, Teoriya veroyatn. i ee primen., 37:3 (1992), 534–542 | MR
[4] Zinchenko N. M., “A modified law of iterated logarithm for stable random variables”, Theory Probab. Math. Statist., 49 (1994), 69–76 | MR
[5] Kiesel R., “The law of the iterated logarithm for certain power series and generalized Nörlund methods”, Math. Proc. Cambridge Philos. Soc., 120:4 (1996), 735–753 | DOI | MR | Zbl
[6] Jakimovski A., Tietz H., “Regularly varying functions and power series methods”, J. Math. Anal. Appl., 73:1 (1980), 65–84 | DOI | MR | Zbl
[7] Kiesel R., “General Nörlund transforms and power series methods”, Math. Z., 244:2 (1993), 273–286 | DOI | MR
[8] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl
[9] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 142 pp. | MR | Zbl
[10] Pruitt W. E., Taylor S. J., “Sample path properties of processes with stable components”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 12 (1969), 267–289 | DOI | MR | Zbl