The Chover-type law of the iterated logarithm for certain power series
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 605-612 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{p_n,\ n\geq 0\}$ be a sequence of real numbers with $p_n\sim R(n)$, $R(\cdot)$ a regular varying function with index greater than $-1/\alpha$ $(0<\alpha<2)$. We prove the Chover-type law of the iterated logarithm for the $(J_p)$ power transform of sequence $\{X_n,\,n\geq 0\}$ of independent identically distributed stable random variables with exponent $\alpha$.
Keywords: summability method, law of iterated logarithm.
Mots-clés : stable distribution
@article{TVP_2005_50_3_a15,
     author = {Ch. Pingyan},
     title = {The {Chover-type} law of the iterated logarithm for certain power series},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {605--612},
     year = {2005},
     volume = {50},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a15/}
}
TY  - JOUR
AU  - Ch. Pingyan
TI  - The Chover-type law of the iterated logarithm for certain power series
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 605
EP  - 612
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a15/
LA  - en
ID  - TVP_2005_50_3_a15
ER  - 
%0 Journal Article
%A Ch. Pingyan
%T The Chover-type law of the iterated logarithm for certain power series
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 605-612
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a15/
%G en
%F TVP_2005_50_3_a15
Ch. Pingyan. The Chover-type law of the iterated logarithm for certain power series. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 605-612. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a15/

[1] Chover J., “A law of the iterated logarithm for stable summands”, Proc. Amer. Math. Soc., 17 (1966), 441–443 | DOI | MR | Zbl

[2] Pakshirajan R. P., Vasudeva R., “A law of the iterated logarithm for stable summands”, Trans. Amer. Math. Soc., 232 (1977), 33–42 | DOI | MR | Zbl

[3] Vasudeva R., Divanji G., “LIL for delayed sums under a non-identically distributed setup”, Teoriya veroyatn. i ee primen., 37:3 (1992), 534–542 | MR

[4] Zinchenko N. M., “A modified law of iterated logarithm for stable random variables”, Theory Probab. Math. Statist., 49 (1994), 69–76 | MR

[5] Kiesel R., “The law of the iterated logarithm for certain power series and generalized Nörlund methods”, Math. Proc. Cambridge Philos. Soc., 120:4 (1996), 735–753 | DOI | MR | Zbl

[6] Jakimovski A., Tietz H., “Regularly varying functions and power series methods”, J. Math. Anal. Appl., 73:1 (1980), 65–84 | DOI | MR | Zbl

[7] Kiesel R., “General Nörlund transforms and power series methods”, Math. Z., 244:2 (1993), 273–286 | DOI | MR

[8] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl

[9] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 142 pp. | MR | Zbl

[10] Pruitt W. E., Taylor S. J., “Sample path properties of processes with stable components”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 12 (1969), 267–289 | DOI | MR | Zbl