Limit theorems for one class of Polling models
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 585-593 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic independence of any finite set of random processes describing states of nodes is proved for an open transportation network with $N$ nodes and $M$ servers moving between them provided $N\to\infty$ and $M/N\to r$ ($0). We determine that the limit flow of servers to a fixed node is a nonstationary Poisson process and describe behavior of the system in the thermodynamic limit. A system with Poisson input flow and a special kind of travel time distribution is examined as an example of such networks. The convergence to a limit dynamic system is proved for it. Also the steady point is specified and it is discovered that this point depends on the shape of travel time distribution only through its mean.
Keywords: polling model, random process, asymptotic independence, thermodynamic limit.
@article{TVP_2005_50_3_a12,
     author = {A. A. Sergeev},
     title = {Limit theorems for one class of {Polling} models},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {585--593},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a12/}
}
TY  - JOUR
AU  - A. A. Sergeev
TI  - Limit theorems for one class of Polling models
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 585
EP  - 593
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a12/
LA  - ru
ID  - TVP_2005_50_3_a12
ER  - 
%0 Journal Article
%A A. A. Sergeev
%T Limit theorems for one class of Polling models
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 585-593
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a12/
%G ru
%F TVP_2005_50_3_a12
A. A. Sergeev. Limit theorems for one class of Polling models. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 585-593. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a12/

[1] Borovkov A. A., Schassberger R., “Ergodicity of a polling network”, Stochastic Processes Appl., 50:2 (1994), 253–262 | DOI | MR | Zbl

[2] Fricker Ch., Jaibi M. R., Stability of a polling model with a Markovian scheme, Rapport de recherche RR-2278, INRIA, France, 1994, 16 pp.

[3] Afanassieva L. G., Delcoigne F., Fayolle G., “On polling systems where servers wait for customers”, Markov Process. Relat. Fields, 3:4 (1997), 527–545 | MR | Zbl

[4] Karpelevich F. I., Pechersky E. A., Suhov Yu. M., “Dobrushin's approach to queueing network theory”, J. Appl. Math. Stochastic Anal., 9:4 (1996), 373–397 | DOI | MR | Zbl

[5] Vvedenskaya N. D., Dobrushin R. L., Karpelevich F. I., “Sistema obsluzhivaniya s vyborom naimenshei iz dvukh ocheredei – asimptoticheskii podkhod”, Problemy peredachi informatsii, 32:1 (1996), 20–34 | MR | Zbl

[6] Afanassieva L. G., Fayolle G., Popov S. Yu., Models for transportation networks, Rapport de recherche, RR-2834, INRIA, France, 1996, 25 pp.

[7] Ethier S. N., Kurtz T. G., Markov Processes. Characterization and Convergence, John Wiley, New York, 1986, 534 pp. | MR | Zbl

[8] Vvedenskaya N. D., Suhov Yu. M., “Dobrushin's mean-field approximation for a queue with dynamic routing”, Markov Process. Relat. Fields, 3:4 (1997), 493–526 | MR | Zbl

[9] Karpelevich F. I., Rybko A. N., “Asimptoticheskoe povedenie simmetrichnoi zamknutoi seti massovogo obsluzhivaniya v termodinamicheskom predele”, Problemy peredachi informatsii, 36:2 (2000), 69–95 | MR | Zbl

[10] Sevastyanov B. A., “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 17:4 (1972), 733–737