On asymptotic behavior of one class of the first exut times in multidimensional random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 579-585 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies integral limit theorems for the first exit time of a random walk described by a nonlinear function of the sum of independent random vectors. We also study the asymptotic behavior of a mean and a variance of the first exit time under consideration.
Keywords: random walk, first exit time, integral limit theorem.
@article{TVP_2005_50_3_a11,
     author = {F. G. Ragimov},
     title = {On asymptotic behavior of one class of the first exut times in multidimensional random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {579--585},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a11/}
}
TY  - JOUR
AU  - F. G. Ragimov
TI  - On asymptotic behavior of one class of the first exut times in multidimensional random walk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 579
EP  - 585
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a11/
LA  - ru
ID  - TVP_2005_50_3_a11
ER  - 
%0 Journal Article
%A F. G. Ragimov
%T On asymptotic behavior of one class of the first exut times in multidimensional random walk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 579-585
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a11/
%G ru
%F TVP_2005_50_3_a11
F. G. Ragimov. On asymptotic behavior of one class of the first exut times in multidimensional random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 579-585. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a11/

[1] Woodroofe M., Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, PA, 1982, 110 pp. | MR

[2] Ragimov F. G., Predelnye teoremy dlya momentov pervogo vykhoda protsessov s nezavisimymi prirascheniyami, Diss. $\dots$ kand. fiz.-matem. nauk, MIAN, M., 1985, 127 pp.

[3] Siegmund D., Sequential Analysis. Tests and Confidence Intervals, Springer-Verlag, New York, 1985, 272 pp. | MR

[4] Aras G., Woodroofe M., “Asymptotic expansions for the moments of a randomly stopped average”, Ann. Statist., 21:1 (1993), 503–519 | DOI | MR | Zbl

[5] Mogyoródy J., “On limiting distributions for sums of a random number of independent random variables”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 6:3 (1961), 365–371 | MR

[6] Rvacheva E. L., “Ob oblastyakh prityazheniya mnogomernykh ustoichivykh raspredelenii”, Uch. zap. Lvovskogo un-ta, ser. mekh.-matem., 29:1 (1954), 5–44 | Zbl

[7] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[8] Richter W., “Übertragung von Grenzaussagen für Folgen von Zufälligen Größen auf Folgen mit Zufälligen Indizes”, Teoriya veroyatn. i ee primen., 10:1 (1965), 82–94 | MR | Zbl