Integrability of absolutely continuous measure transformations and applications to optimal transportation
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 433-456

Voir la notice de l'article provenant de la source Math-Net.Ru

Given two Borel probability measures $\mu$ and $\nu$ on $\mathbf{R}^d$ such that $d\nu/d\mu =g$, we consider certain mappings of the form $T(x)=x+F(x)$ that transform $\mu$ into $\nu$. Our main results give estimates of the form $\int_{\mathbf{R}^d}\Phi_1(|F|)\,d\mu\leq\int_{\mathbf{R}^d}\Phi_2(g)\, d\mu$ for certain functions $\Phi_1$ and $\Phi_2$ under appropriate assumptions on $\mu$. Applications are given to optimal mass transportations in the Monge problem.
Mots-clés : optimal transportation
Keywords: Gaussian measure, convex measure, logarithmic Sobolev inequality, Poincaré, inequality, Talagrand inequality.
@article{TVP_2005_50_3_a1,
     author = {V. I. Bogachev and A. V. Kolesnikov},
     title = {Integrability of absolutely continuous measure transformations and applications to optimal transportation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {433--456},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. V. Kolesnikov
TI  - Integrability of absolutely continuous measure transformations and applications to optimal transportation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 433
EP  - 456
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/
LA  - ru
ID  - TVP_2005_50_3_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. V. Kolesnikov
%T Integrability of absolutely continuous measure transformations and applications to optimal transportation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 433-456
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/
%G ru
%F TVP_2005_50_3_a1
V. I. Bogachev; A. V. Kolesnikov. Integrability of absolutely continuous measure transformations and applications to optimal transportation. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 433-456. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/