Integrability of absolutely continuous measure transformations and applications to optimal transportation
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 433-456 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given two Borel probability measures $\mu$ and $\nu$ on $\mathbf{R}^d$ such that $d\nu/d\mu =g$, we consider certain mappings of the form $T(x)=x+F(x)$ that transform $\mu$ into $\nu$. Our main results give estimates of the form $\int_{\mathbf{R}^d}\Phi_1(|F|)\,d\mu\leq\int_{\mathbf{R}^d}\Phi_2(g)\, d\mu$ for certain functions $\Phi_1$ and $\Phi_2$ under appropriate assumptions on $\mu$. Applications are given to optimal mass transportations in the Monge problem.
Mots-clés : optimal transportation, Poincaré
Keywords: Gaussian measure, convex measure, logarithmic Sobolev inequality, inequality, Talagrand inequality.
@article{TVP_2005_50_3_a1,
     author = {V. I. Bogachev and A. V. Kolesnikov},
     title = {Integrability of absolutely continuous measure transformations and applications to optimal transportation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {433--456},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. V. Kolesnikov
TI  - Integrability of absolutely continuous measure transformations and applications to optimal transportation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 433
EP  - 456
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/
LA  - ru
ID  - TVP_2005_50_3_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. V. Kolesnikov
%T Integrability of absolutely continuous measure transformations and applications to optimal transportation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 433-456
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/
%G ru
%F TVP_2005_50_3_a1
V. I. Bogachev; A. V. Kolesnikov. Integrability of absolutely continuous measure transformations and applications to optimal transportation. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 433-456. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/

[1] Agueh M., Ghoussoub N., Kang X., “Geometric inequalities via a general comparison principle for interacting gases”, Geom. Funct. Anal., 14:1 (2004), 215–244 | DOI | MR | Zbl

[2] Bobkov S. G., Gentil I., Ledoux M., “Hypercontractivity of Hamilton–Jacobi equations”, J. Math. Pures Appl., 80:7 (2001), 669–696 | DOI | MR | Zbl

[3] Bobkov S. G., Götze F., “Exponential integrability and transportation cost related to logarithmic Sobolev inequalities”, J. Funct. Anal., 163:1 (1999), 1–28 | DOI | MR | Zbl

[4] Bogachev V. I., Kolesnikov A. V., “Nelineinye preobrazovaniya vypuklykh mer i entropiya plotnostei Radona–Nikodima”, Dokl. RAN, 397:2 (2004), 155–159 | MR

[5] Bogachev V. I., Kolesnikov A. V., “Nelineinye preobrazovaniya vypuklykh mer”, Teoriya veroyatn. i ee primen., 50:1 (2005), 27–51 | MR

[6] Bogachev V. I., Kolesnikov A. V., On the Monge–Ampère equation in infinite dimensions, BiBoS Preprint No 05-01-175, Universität Bielefeld, Bielefeld, 2005 | MR | Zbl

[7] Bogachev V. I., Kolesnikov A. V., Medvedev K. V., “O treugolnykh preobrazovaniyakh mer”, Dokl. RAN, 396:6 (2004), 727–732 | MR | Zbl

[8] Bogachev V. I., Kolesnikov A. V., Medvedev K. V., “Treugolnye preobrazovaniya mer”, Matem. sb., 196:3 (2005), 3–30 | MR | Zbl

[9] Brenier Y., “Polar factorization and monotone rearrangement of vector valued functions”, Comm. Pure Appl. Math., 44:4 (1991), 375–417 | DOI | MR | Zbl

[10] Cordero-Erausquin D., “Non-smooth differential properties of optimal transport”, Contemp. Math., 353, 2004, 61–71 | MR | Zbl

[11] Cordero-Erausquin D., Nazaret B., Villani C., “A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities”, Adv. Math., 182:2 (2004), 307–332 | DOI | MR | Zbl

[12] Feyel D., Üstünel A. S., “Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space”, Probab. Theory Related Fields, 128:3 (2004), 347–385 | DOI | MR | Zbl

[13] Gangbo W., McCann R. J., “The geometry of optimal transportation”, Acta Math., 177:2 (1996), 113–161 | DOI | MR | Zbl

[14] Kolesnikov A. V., “Neravenstva vypuklosti i nelineinye preobrazovaniya mer”, Dokl. RAN, 396:3 (2004), 300–304 | MR | Zbl

[15] Kolesnikov A. V., “Convexity inequalities and optimal transport of infinite-dimensional measures”, J. Math. Pures Appl. (9), 83:11 (2004), 1373–1404 | MR | Zbl

[16] McCann R. J., “Existence and uniqueness of monotone measure-preserving maps”, Duke Math. J., 80:2 (1995), 309–323 | DOI | MR | Zbl

[17] Otto F., Villani C., “Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality”, J. Funct. Anal., 173:2 (2000), 361–400 | DOI | MR | Zbl

[18] Rachev S. T., Rüschendorf L., Mass Transportation Problems, v. I, II, Springer-Verlag, New York, 1998, 508 pp. ; 430 pp. | MR

[19] Talagrand M., “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6:3 (1996), 587–600 | DOI | MR | Zbl

[20] Villani C., Topics in Optimal Transportation, Amer. Math. Soc., Providence, R.I., 2003, 370 pp. | MR | Zbl

[21] Fernique X., “Extension du théorème de Cameron–Martin aux translations aléatoires. II Intégrabilité des densités”, High Dimensional Probability (Sandjberg, 2002), v. III, Progr. Probab., 55, Birkhäuser, Basel, 2003, 95–102 | MR | Zbl

[22] Ledoux M., The Concentration of Measure Phenomenon, Amer. Math. Soc., Providence, R.I., 2001, 181 pp. | MR | Zbl

[23] Wang F. Y., “Logarithmic Sobolev inequalities on noncompact Riemannian manifolds”, Probab. Theory Related Fields, 109:3 (1997), 417–424 | DOI | MR | Zbl

[24] Bobkov S. G., “Isoperimetric and analytic inequalities for log-concave probability measures”, Ann. Probab., 27:4 (1999), 1903–1921 | DOI | MR | Zbl

[25] Hajłasz P., “Change of variables formula under minimal assumptions”, Colloq. Math., 64:1 (1993), 93–101 | MR | Zbl

[26] Bogachev V. I., Osnovy teorii mery, v. 1, 2, Regulyarnaya i khaoticheskaya dinamika, M., Izhevsk, 2003

[27] Bogachev V. I., Gaussovskie mery, Nauka, M., 1997, 352 pp. | MR

[28] Rokafellar T., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[29] Bogachev V. I., Kolesnikov A. V., “Otkrytye otobrazheniya veroyatnostnykh mer i teorema predstavleniya Skorokhoda”, Teoriya veroyatn. i ee primen., 46:1 (2001), 3–27 | MR | Zbl

[30] Pisier G., “Probabilistic methods in the geometry of Banach spaces”, Lecture Notes in Math., 1206, 1986, 167–241 | MR | Zbl

[31] Wang F. Y., “Probability distance inequalities on Riemannian manifolds and path spaces”, J. Funct. Anal., 206:1 (2004), 167–190 | DOI | MR | Zbl

[32] Blower G., “The Gaussian isoperimetric inequality and transportation”, Positivity, 7:3 (2003), 203–224 | DOI | MR | Zbl