Integrability of absolutely continuous measure transformations and applications to optimal transportation
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 433-456
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Given two Borel probability measures $\mu$ and $\nu$ on $\mathbf{R}^d$ such that $d\nu/d\mu =g$, we consider certain mappings of the form $T(x)=x+F(x)$ that transform $\mu$ into $\nu$. Our main results give estimates of the form $\int_{\mathbf{R}^d}\Phi_1(|F|)\,d\mu\leq\int_{\mathbf{R}^d}\Phi_2(g)\, d\mu$ for certain functions $\Phi_1$ and $\Phi_2$ under appropriate assumptions on $\mu$. Applications are given to optimal mass transportations in the Monge problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
optimal transportation
Keywords: Gaussian measure, convex measure, logarithmic Sobolev inequality, Poincaré, inequality, Talagrand inequality.
                    
                  
                
                
                Keywords: Gaussian measure, convex measure, logarithmic Sobolev inequality, Poincaré, inequality, Talagrand inequality.
@article{TVP_2005_50_3_a1,
     author = {V. I. Bogachev and A. V. Kolesnikov},
     title = {Integrability of absolutely continuous measure transformations and applications to optimal transportation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {433--456},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/}
}
                      
                      
                    TY - JOUR AU - V. I. Bogachev AU - A. V. Kolesnikov TI - Integrability of absolutely continuous measure transformations and applications to optimal transportation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 433 EP - 456 VL - 50 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/ LA - ru ID - TVP_2005_50_3_a1 ER -
%0 Journal Article %A V. I. Bogachev %A A. V. Kolesnikov %T Integrability of absolutely continuous measure transformations and applications to optimal transportation %J Teoriâ veroâtnostej i ee primeneniâ %D 2005 %P 433-456 %V 50 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/ %G ru %F TVP_2005_50_3_a1
V. I. Bogachev; A. V. Kolesnikov. Integrability of absolutely continuous measure transformations and applications to optimal transportation. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 433-456. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a1/
