On a probability of simultaneously extremes of two Gaussian nonstationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 417-432
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper deals with the probability of simultaneous extremes of two Gaussian nonstationary processes $\mathbf{P}\bigl\{\max_{t\in[0,T]}X_1(t)>u,\ \max_{s\in[0,T]}X_2(s)>u\bigr\}$. The exact asymptotic representation for the probability is found as $u\to\infty$. The main tool for finding the asymptotics is a development of the double sum method.
Keywords:
Gaussian nonstationary processes, extremum, double sum method.
@article{TVP_2005_50_3_a0,
author = {A. Anshin},
title = {On a probability of simultaneously extremes of two {Gaussian} nonstationary processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {417--432},
year = {2005},
volume = {50},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a0/}
}
A. Anshin. On a probability of simultaneously extremes of two Gaussian nonstationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 417-432. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a0/
[1] Pickands J., “Asymptotic properties of the maximum in a stationary Gaussian process”, Trans. Amer. Math. Soc., 145 (1969), 75–86 | DOI | MR | Zbl
[2] Piterbarg V. I., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Amer. Math. Soc., Providence, R.I., 1996, 206 pp. | MR
[3] Ladneva A. N., Piterbarg V. I., O veroyatnosti dvoinogo ekstremuma dlya gaussovskogo statsionarnogo protsessa, Dep. v VINITI, No 2859-V00, 2000
[4] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR