H.F.D. ($H$-function distribution) and the Benford law. I
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 366-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper notes a connection among a wide class of the so-called $HF$-random variables, approximately uniform distributions, and Benford's law. This connection is considered in detail with the help of examples of random variables having gamma-distribution. Let $Y$ be a random variable having gamma-distribution with parameter $\alpha$. It is proved that the distribution of a fractional part of the logarithm of $Y$ with respect to any base larger than 1 converges to the uniform distribution on the interval $[0,1]$ for $\alpha\to0$. This implies that the probability distribution of the first significant digit of $Y$ for small $\alpha$ can be approximately described by Benford's law. The order of the approximation is illustrated by tables.
Keywords: $H$-function distribution, Benford law
Mots-clés : gamma-distributions, Poisson summation formula.
@article{TVP_2005_50_2_a9,
     author = {A. A. Kulikova and Yu. V. Prokhorov and V. I. Khokhlov},
     title = {H.F.D. ($H$-function distribution) and the {Benford} {law.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {366--371},
     year = {2005},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a9/}
}
TY  - JOUR
AU  - A. A. Kulikova
AU  - Yu. V. Prokhorov
AU  - V. I. Khokhlov
TI  - H.F.D. ($H$-function distribution) and the Benford law. I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 366
EP  - 371
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a9/
LA  - ru
ID  - TVP_2005_50_2_a9
ER  - 
%0 Journal Article
%A A. A. Kulikova
%A Yu. V. Prokhorov
%A V. I. Khokhlov
%T H.F.D. ($H$-function distribution) and the Benford law. I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 366-371
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a9/
%G ru
%F TVP_2005_50_2_a9
A. A. Kulikova; Yu. V. Prokhorov; V. I. Khokhlov. H.F.D. ($H$-function distribution) and the Benford law. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 366-371. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a9/

[1] Zolotarev V. M., “Preobrazovaniya Mellina–Stiltesa v teorii veroyatnostei”, Teoriya veroyatn. i ee primen., II:4 (1957), 444–468 | MR

[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR | Zbl

[3] Springer M. D., “$H$-function distribution”, Encyclopedia of Statistical Sciences, v. 3, eds. Kotz S., Johnson N., John Wiley, New York, 1981, 619–621

[4] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp. | MR

[5] Kulikova A. A., Prokhorov Yu. V., “Odnostoronnie ustoichivye raspredeleniya i zakon Benforda”, Teoriya veroyatn. i ee primen., 49:1 (2004), 178–184 | MR | Zbl

[6] Engel H.-A., Leuenberger C., “Benford's law for exponential random variables”, Statist. Probab. Letters, 63:4 (2003), 361–365 | DOI | MR | Zbl