On the accuracy of the normal approximation.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 353-366

Voir la notice de l'article provenant de la source Math-Net.Ru

Presented are practically applicable estimates of the accuracy of the normal approximation for the distributions of sums of independent identically distributed absolutely continuous random variables with finite moments of order $2+\delta$, $0\delta\le 1$. The right-hand side of the estimate is the sum of two summands, the first being the Lyapunov fraction with the absolute constant arbitrarily close to the asymptotically exact one, whereas the second summand decreases exponentially fast.
Keywords: central limit theorem, normal approximation, Berry–Esseen inequality, convergence rate estimate, asymptotically exact constant.
@article{TVP_2005_50_2_a8,
     author = {V. Yu. Korolev and I. G. Shevtsova},
     title = {On the accuracy of the normal {approximation.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {353--366},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a8/}
}
TY  - JOUR
AU  - V. Yu. Korolev
AU  - I. G. Shevtsova
TI  - On the accuracy of the normal approximation.~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 353
EP  - 366
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a8/
LA  - ru
ID  - TVP_2005_50_2_a8
ER  - 
%0 Journal Article
%A V. Yu. Korolev
%A I. G. Shevtsova
%T On the accuracy of the normal approximation.~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 353-366
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a8/
%G ru
%F TVP_2005_50_2_a8
V. Yu. Korolev; I. G. Shevtsova. On the accuracy of the normal approximation.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 353-366. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a8/