On the accuracy of the normal approximation.~I
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 353-366
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Presented are practically applicable estimates of the accuracy of the normal approximation for the distributions of sums of independent identically distributed absolutely continuous random variables with finite moments of order $2+\delta$, $0\delta\le 1$. The right-hand side of the estimate is the sum of two summands, the first being the Lyapunov fraction with the absolute constant arbitrarily close to the asymptotically exact one, whereas the second summand decreases exponentially fast.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
central limit theorem, normal approximation, Berry–Esseen inequality, convergence rate estimate, asymptotically exact constant.
                    
                  
                
                
                @article{TVP_2005_50_2_a8,
     author = {V. Yu. Korolev and I. G. Shevtsova},
     title = {On the accuracy of the normal {approximation.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {353--366},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a8/}
}
                      
                      
                    V. Yu. Korolev; I. G. Shevtsova. On the accuracy of the normal approximation.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 353-366. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a8/
