@article{TVP_2005_50_2_a8,
author = {V. Yu. Korolev and I. G. Shevtsova},
title = {On the accuracy of the normal {approximation.~I}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {353--366},
year = {2005},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a8/}
}
V. Yu. Korolev; I. G. Shevtsova. On the accuracy of the normal approximation. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 353-366. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a8/
[1] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem i asimptoticheskie razlozheniya, Nauka, M., 1982, 286 pp. | MR
[2] Zolotarev V. M., “Absolyutnaya otsenka ostatochnogo chlena v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 11:1 (1966), 108–119 | MR | Zbl
[3] Kolmogorov A. N., “Nekotorye raboty poslednikh let v oblasti predelnykh teorem teorii veroyatnostei”, Vestnik Mosk. un-ta, ser. fiz.-matem. i estestv. nauk, 10:7 (1953), 29–38 | Zbl
[4] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.
[5] Matskyavichyus V. K., “O nizhnei otsenke skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 28:3 (1983), 565–569 | MR | Zbl
[6] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR
[7] Ppokhopov Yu. V., “Ob odnoi lokalnoi teopeme”, Ppedelnye teopemy teopii vepoyatnostei, ed. S. Kh. Sirazhdinov, Izd-vo AN UzSSR, Tashkent, 1963, 75–80
[8] Rogozin B. A., “Odno zamechanie k rabote Esseena “Momentnoe neravenstvo s primeneniem k tsentralnoi predelnoi teoreme””, Teoriya veroyatn. i ee primen., 5:1 (1960), 125–128 | MR
[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[10] Chistyakov G. P., “Novoe asimptoticheskoe razlozhenie i asimptoticheski nailuchshie postoyannye v teoreme Lyapunova. I”, Teoriya veroyatn. i ee primen., 46:2 (2001), 326–344 | MR | Zbl
[11] Shiganov I. S., “Ob utochnenii verkhnei konstanty v ostatochnom chlene tsentralnoi predelnoi teoremy”, Problemy ustoichivosti stokhasticheskikh modelei, eds. V. M. Zolotarev i V. V. Kalashnikov, VNIISI, M., 1982, 109–115 | MR
[12] Bentkus V., “On the asymptotical behavior of the constant in the Berry–Esseen inequality”, J. Theoret. Probab., 7:2 (1994), 211–224 | DOI | MR | Zbl
[13] Bergström H., “On the central limit theorem in the case of not equally distributed random variables”, Skand. Aktuarietidskr., 32 (1949), 37–62 | MR
[14] Berry A. C., “The accuracy of the Gaussian approximation to the sum of independent variates”, Trans. Amer. Math. Soc., 49 (1941), 122–136 | DOI | MR
[15] Esseen C.-G., “On the Liapounoff limit of error in the theory of probability”, Ark. Mat. Astron. Fys., A28:9 (1942), 1–19 | MR
[16] Esseen C.-G., “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl
[17] Esseen C.-G., “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | MR
[18] Hsu P. L., “The approximate distributions of the mean and variance of a sample of independent variables”, Ann. Math. Statist., 16:1 (1945), 1–29 | DOI | MR | Zbl
[19] Paditz L., “Über eine globale Fehlerabschätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List”. Dresden, 33:2 (1986), 399–404 | MR | Zbl
[20] Paditz L., “On the error-bound in the nonuniform version of Esseen's inequality in the $L_p$-metric”, Statistics, 27:3–4 (1996), 379–394 | DOI | MR | Zbl
[21] Prawitz H., “Limits for a distribution, if the characteristic function is given in a finite domain”, Skand. Aktuarietidskr., 1972 (1973), 138–154 | MR | Zbl
[22] Takano K., “A remark to a result of A. C. Berry”, Res. Mem. Inst. Math., 9:6 (1951), 4.08–4.15 (in Japan)
[23] Tysiak W., Gleichmäßige und nicht-gleichmäßige Berry–Esseen-Abschätzungen, Dissertation, Wuppertal, 1983 | Zbl
[24] Ushakov N. G., Selected Topics in Characteristic Functions, VSP, Utrecht, 1999, 355 pp. | MR | Zbl
[25] van Beek P., “An application of Fourier methods to the problem of sharpening the Berry–Esseen inequality”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 23 (1972), 187–196 | DOI | MR | Zbl
[26] Wallace D. L., “Asymptotic approximations to distributions”, Ann. Math. Statist., 29 (1958), 635–654 | DOI | MR | Zbl
[27] Zolotarev V. M., “A sharpening of the inequality of Berry–Esseen”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 8 (1967), 332–342 | DOI | MR | Zbl