Convergence rate of the dependent bootstrapped means
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 344-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a Baum–Katz, Erdős, Hsu–Robbins, Spitzer type complete convergence result is obtained for the dependent bootstrapped means.
Keywords: bootstrapped means, dependent bootstrap, rate of convergence, exponential inequalities, strong law of large numbers.
@article{TVP_2005_50_2_a7,
     author = {A. I. Volodin and T.-Ch. Hu and M. Ord\'o\~nez Cabrera},
     title = {Convergence rate of the dependent bootstrapped means},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {344--352},
     year = {2005},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a7/}
}
TY  - JOUR
AU  - A. I. Volodin
AU  - T.-Ch. Hu
AU  - M. Ordóñez Cabrera
TI  - Convergence rate of the dependent bootstrapped means
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 344
EP  - 352
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a7/
LA  - ru
ID  - TVP_2005_50_2_a7
ER  - 
%0 Journal Article
%A A. I. Volodin
%A T.-Ch. Hu
%A M. Ordóñez Cabrera
%T Convergence rate of the dependent bootstrapped means
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 344-352
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a7/
%G ru
%F TVP_2005_50_2_a7
A. I. Volodin; T.-Ch. Hu; M. Ordóñez Cabrera. Convergence rate of the dependent bootstrapped means. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 344-352. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a7/

[1] Arenal-Gutiérrez E., Matrán C., Cuesta-Albertos J. A., “On the unconditional strong law of large numbers for the bootstrap mean”, Statist. Probab. Lett., 27:1 (1996), 49–60 | DOI | MR | Zbl

[2] Athreya K. B., “Strong law for the bootstrap”, Statist. Probab. Lett., 1 (1983), 147–150 | DOI | MR | Zbl

[3] Barnes G. R., Tucker H. G., “On almost sure convergence of normed maxima of independent random variables”, J. London Math. Soc. (2), 16 (1977), 377–383 | DOI | MR | Zbl

[4] Bickel P. J., Freedman D., “Some asymptotic theory for the bootstrap”, Ann. Statist., 9 (1981), 1196–1217 | DOI | MR | Zbl

[5] Bozorgnia A., Patterson R. F., Taylor R. L., “Limit theorems for dependent random variables”, Proceedings of the First World Congress of Nonlinear Analysts (Tampa, 1992), ed. V. Lakshmikantham, de Gruyter, Berlin, 1996, 1639–1650 | MR | Zbl

[6] Csörgő S., “On the law of large numbers for the bootstrap mean”, Statist. Probab. Lett., 14:1 (1992), 1–7 | DOI | MR | Zbl

[7] Efron B., “Bootstrap methods: Another look at the jackknife”, Ann Statist., 7 (1979), 1–26 | DOI | MR | Zbl

[8] Lehmann E. L., “Some concepts of dependence”, Ann. Math. Statist., 37 (1966), 1137–1153 | DOI | MR | Zbl

[9] Li D., Rosalsky A., Ahmed S. E., “Complete convergence of bootstrapped means and moments of the supremum of normed bootstrapped sums”, Stochastic Anal. Appl., 17:5 (1999), 799–814 | DOI | MR | Zbl

[10] Mikosch T., “Almost sure convergence of bootstrapped means and $U$-statistics”, J. Statist. Plann. Inference, 41:1 (1994), 1–19 | DOI | MR | Zbl

[11] Petrov V. V., “On the strong law of large numbers”, Statist. Probab. Lett., 26:4 (1996), 377–380 | DOI | MR | Zbl

[12] Smith W. D., Taylor R. L., “Consistency of dependent bootstrap estimators”, Amer. J. Math. Management Sci., 21:3–4 (2001), 359–382 | MR

[13] Smith W., Taylor R. L., “Dependent bootstrap confidence intervals”, IMS Lecture Notes Monogr. Ser., 37, 2001, 91–107 | MR