@article{TVP_2005_50_2_a5,
author = {F. Bassetti and E. Regazzini},
title = {Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {312--330},
year = {2005},
volume = {50},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/}
}
TY - JOUR AU - F. Bassetti AU - E. Regazzini TI - Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 312 EP - 330 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/ LA - en ID - TVP_2005_50_2_a5 ER -
%0 Journal Article %A F. Bassetti %A E. Regazzini %T Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters %J Teoriâ veroâtnostej i ee primeneniâ %D 2005 %P 312-330 %V 50 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/ %G en %F TVP_2005_50_2_a5
F. Bassetti; E. Regazzini. Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 312-330. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/
[1] Bagnoli M., Bergstrom T., Log-concave probability and its applications, Technical Report, Department of Economics, UCSB, Santa Barbara, 2004 http://repositories.cdlib.org/ucsbecon/bergstrom/1989D | MR
[2] Bassetti F., Bodini A., Regazzini E., Consistency of minimum Kantorovich distance estimators, Technical Report 4-MI, I.M.A.T.I.–C.N.R., Milano, 2004 http://www.mi.imati.cnr.it
[3] Belili N., Bensaï A., Heinich H., “Estimation basée sur la fonctionnelle de Kantorovich et la distance de Lévy”, C. R. Acad. Sci. Paris, 328:5 (1999), 423–426 | MR | Zbl
[4] Bertino S., “Gli indici di dissomiglianza e la stima dei parametri”, Studi di probabilità, statistica e ricerca operativa in onore di Giuseppe Pompilj, Edizioni Oderisi, Gubbio, 1971, 187–202 | MR
[5] Birkes D., Dodge Y., Alternative Methods of Regression, Wiley, New York, 1993, 228 pp. | MR | Zbl
[6] Borodin A. N., Salminen P., Handbook of Brownian Motion – Facts and Formulae, Birkhäuser, Basel, 2002 | MR | Zbl
[7] Brown L. D., Purves R., “Measurable selections of extrema”, Ann. Statist., 1 (1973), 902–912 | DOI | MR | Zbl
[8] Cheney E. W., Wulbert D. E., “The existence and unicity of best approximations”, Math. Scand., 24 (1969), 113–140 | MR | Zbl
[9] Kramer G., Matematicheskie metody statistiki, IL, M., 1948, 632 pp.
[10] del Barrio E., Giné E., and Matrán C., “Central limit theorems for the Wasserstein distance between the empirical and the true distributions”, Ann. Probab., 27:2 (1999), 1009–1071 | DOI | MR | Zbl
[11] Dodge Y. (ed.), $L_1$-statistical Procedures and Related Topics, IMS Lecture Notes Monogr. Ser., 31, Institute of Mathematical Statistics, Hayward, CA, 1997, 498 pp. | MR | Zbl
[12] Embrechts P., Rogers L. C. G., Yor M., “A proof of Dassios' representation of the $\alpha$-quantile of Brownian motion with drift”, Ann. Appl. Probab., 5:3 (1995), 757–767 | DOI | MR | Zbl
[13] Gini C., “Di una misura della dissogmiglianza fra due gruppi di quantità e applicazioni allo studio delle relazioni statistiche”, Atti R. Ist. Veneto Sci. Lett. e Arti, 73 (1914), 185–213
[14] Hooghiemstra G., “On explicit occupation time distributions for Brownian processes”, Statist. Probab. Lett., 56:4 (2002), 405–417 | DOI | MR | Zbl
[15] Khyuber Dzh. P., Robastnost v statistike, Mir, M., 1984, 304 pp. | MR
[16] Huber P. J., Robust statistical procedures, CBMS-NSF Regional Conference Ser. Appl. Math., 68, SIAM, Philadelphia, PA, 1996 | MR
[17] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991, 470 pp. | MR | Zbl
[18] Magnus W., Oberhettinger F., Soni R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966, 508 pp. | MR
[19] Portnoy S., Koenker R., “The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators”, Statist. Sci., 12:4 (1997), 279–300 | DOI | MR | Zbl
[20] Prékopa A., “On logarithmic concave measures and functions”, Acta Sci. Math. (Szeged), 34 (1973), 335–343 | MR | Zbl
[21] Rachev S. T., Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester, 1991, 494 pp. | MR | Zbl
[22] Takács L., “The distribution of the sojourn time for the Brownian excursion”, Methodol. Comput. Appl. Probab., 1:1 (1999), 7–28 | DOI | MR | Zbl
[23] van der Vaart A. W., Wellner J. A., Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996, 508 pp. | MR
[24] Villani C., Topics in Optimal Transportation, Amer. Math. Soc., Providence, RI, 2003, 370 pp. | MR | Zbl