Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 312-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the asymptotic properties of an unexplored estimation method, for location and scale parameters, based on the minimization of the Monge–Gini–Kantorovich–Wasserstein distance. This method is rigorously defined and justified according to the general principle which directs the theory of regression. The resulting estimators — called minimum dissimilarity estimators — exist, and are measurable, consistent, and robust. Their asymptotic distribution is the same as the probability distribution of the absolute minimum point of an interesting functional of a standard Brownian bridge. This fact can be employed to obtain both explicit exact expressions and numerical approximations for the above asymptotic distribution.
Keywords: argmax argument, asymptotic laws, influence function, minimum dissimilarity estimator, Monge–Gini–Kantorovich–Wasserstein metric, occupation time of a Brownian bridge, robustness, minimum dissimilarity estimators.
@article{TVP_2005_50_2_a5,
     author = {F. Bassetti and E. Regazzini},
     title = {Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {312--330},
     year = {2005},
     volume = {50},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/}
}
TY  - JOUR
AU  - F. Bassetti
AU  - E. Regazzini
TI  - Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 312
EP  - 330
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/
LA  - en
ID  - TVP_2005_50_2_a5
ER  - 
%0 Journal Article
%A F. Bassetti
%A E. Regazzini
%T Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 312-330
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/
%G en
%F TVP_2005_50_2_a5
F. Bassetti; E. Regazzini. Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 312-330. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/

[1] Bagnoli M., Bergstrom T., Log-concave probability and its applications, Technical Report, Department of Economics, UCSB, Santa Barbara, 2004 http://repositories.cdlib.org/ucsbecon/bergstrom/1989D | MR

[2] Bassetti F., Bodini A., Regazzini E., Consistency of minimum Kantorovich distance estimators, Technical Report 4-MI, I.M.A.T.I.–C.N.R., Milano, 2004 http://www.mi.imati.cnr.it

[3] Belili N., Bensaï A., Heinich H., “Estimation basée sur la fonctionnelle de Kantorovich et la distance de Lévy”, C. R. Acad. Sci. Paris, 328:5 (1999), 423–426 | MR | Zbl

[4] Bertino S., “Gli indici di dissomiglianza e la stima dei parametri”, Studi di probabilità, statistica e ricerca operativa in onore di Giuseppe Pompilj, Edizioni Oderisi, Gubbio, 1971, 187–202 | MR

[5] Birkes D., Dodge Y., Alternative Methods of Regression, Wiley, New York, 1993, 228 pp. | MR | Zbl

[6] Borodin A. N., Salminen P., Handbook of Brownian Motion – Facts and Formulae, Birkhäuser, Basel, 2002 | MR | Zbl

[7] Brown L. D., Purves R., “Measurable selections of extrema”, Ann. Statist., 1 (1973), 902–912 | DOI | MR | Zbl

[8] Cheney E. W., Wulbert D. E., “The existence and unicity of best approximations”, Math. Scand., 24 (1969), 113–140 | MR | Zbl

[9] Kramer G., Matematicheskie metody statistiki, IL, M., 1948, 632 pp.

[10] del Barrio E., Giné E., and Matrán C., “Central limit theorems for the Wasserstein distance between the empirical and the true distributions”, Ann. Probab., 27:2 (1999), 1009–1071 | DOI | MR | Zbl

[11] Dodge Y. (ed.), $L_1$-statistical Procedures and Related Topics, IMS Lecture Notes Monogr. Ser., 31, Institute of Mathematical Statistics, Hayward, CA, 1997, 498 pp. | MR | Zbl

[12] Embrechts P., Rogers L. C. G., Yor M., “A proof of Dassios' representation of the $\alpha$-quantile of Brownian motion with drift”, Ann. Appl. Probab., 5:3 (1995), 757–767 | DOI | MR | Zbl

[13] Gini C., “Di una misura della dissogmiglianza fra due gruppi di quantità e applicazioni allo studio delle relazioni statistiche”, Atti R. Ist. Veneto Sci. Lett. e Arti, 73 (1914), 185–213

[14] Hooghiemstra G., “On explicit occupation time distributions for Brownian processes”, Statist. Probab. Lett., 56:4 (2002), 405–417 | DOI | MR | Zbl

[15] Khyuber Dzh. P., Robastnost v statistike, Mir, M., 1984, 304 pp. | MR

[16] Huber P. J., Robust statistical procedures, CBMS-NSF Regional Conference Ser. Appl. Math., 68, SIAM, Philadelphia, PA, 1996 | MR

[17] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991, 470 pp. | MR | Zbl

[18] Magnus W., Oberhettinger F., Soni R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966, 508 pp. | MR

[19] Portnoy S., Koenker R., “The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators”, Statist. Sci., 12:4 (1997), 279–300 | DOI | MR | Zbl

[20] Prékopa A., “On logarithmic concave measures and functions”, Acta Sci. Math. (Szeged), 34 (1973), 335–343 | MR | Zbl

[21] Rachev S. T., Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester, 1991, 494 pp. | MR | Zbl

[22] Takács L., “The distribution of the sojourn time for the Brownian excursion”, Methodol. Comput. Appl. Probab., 1:1 (1999), 7–28 | DOI | MR | Zbl

[23] van der Vaart A. W., Wellner J. A., Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996, 508 pp. | MR

[24] Villani C., Topics in Optimal Transportation, Amer. Math. Soc., Providence, RI, 2003, 370 pp. | MR | Zbl