Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 312-330
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper deals with the asymptotic properties of an unexplored estimation method, for location and scale parameters, based on the minimization of the Monge–Gini–Kantorovich–Wasserstein distance. This method is rigorously defined and justified according to the general principle which directs the theory of regression. The resulting estimators — called minimum dissimilarity estimators — exist, and are measurable, consistent, and robust. Their asymptotic distribution is the same as the probability distribution of the absolute minimum point of an interesting functional of a standard Brownian bridge. This fact can be employed to obtain both explicit exact expressions and numerical approximations for the above asymptotic distribution.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
argmax argument, asymptotic laws, influence function, minimum dissimilarity estimator, Monge–Gini–Kantorovich–Wasserstein metric, occupation time of a Brownian bridge, robustness, minimum dissimilarity estimators.
                    
                    
                    
                  
                
                
                @article{TVP_2005_50_2_a5,
     author = {F. Bassetti and E. Regazzini},
     title = {Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {312--330},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/}
}
                      
                      
                    TY - JOUR AU - F. Bassetti AU - E. Regazzini TI - Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 312 EP - 330 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/ LA - en ID - TVP_2005_50_2_a5 ER -
%0 Journal Article %A F. Bassetti %A E. Regazzini %T Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters %J Teoriâ veroâtnostej i ee primeneniâ %D 2005 %P 312-330 %V 50 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/ %G en %F TVP_2005_50_2_a5
F. Bassetti; E. Regazzini. Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 312-330. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a5/
