The strong law of large numbers for triangular array scheme of conditional distributions of stable elliptically contoured measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 292-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with conditional distributions of stable elliptically contoured measures on real separable Hilbert space. We consider projections of these measures on an increasing sequence of finite-dimensional linear subspaces spanned by initial elements of orthonormal basis. It is shown that the asymptotic properties of corresponding conditional distributions depends on a choice of a basis of Hilbert space. We give sufficient conditions of a choice of a basis when triangular array schemes of conditional distributions (in a certain sense) obey the strong law of large numbers.
Keywords: stable elliptically contoured measures, orthonormal basis, Schoenberg representation, equivalent Gaussian measures, regular operators, almost everywhere convergence.
Mots-clés : conditional distributions
@article{TVP_2005_50_2_a4,
     author = {S. Ya. Shatskikh},
     title = {The strong law of large numbers for triangular array scheme of conditional distributions of stable elliptically contoured measures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {292--311},
     year = {2005},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a4/}
}
TY  - JOUR
AU  - S. Ya. Shatskikh
TI  - The strong law of large numbers for triangular array scheme of conditional distributions of stable elliptically contoured measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 292
EP  - 311
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a4/
LA  - ru
ID  - TVP_2005_50_2_a4
ER  - 
%0 Journal Article
%A S. Ya. Shatskikh
%T The strong law of large numbers for triangular array scheme of conditional distributions of stable elliptically contoured measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 292-311
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a4/
%G ru
%F TVP_2005_50_2_a4
S. Ya. Shatskikh. The strong law of large numbers for triangular array scheme of conditional distributions of stable elliptically contoured measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 292-311. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a4/

[1] Shatskikh S. Ya., “Ustoichivye ellipticheski konturirovannye mery v gilbertovom prostranstve: asimptoticheskie svoistva uslovnykh raspredelenii”, Izv. RAEN, ser. MMMIU, 1999, no. 3, 43–81 | Zbl

[2] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp. | MR | Zbl

[3] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 455 pp. | MR

[4] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971, 352 pp. | MR

[5] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975, 232 pp.

[6] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975, 648 pp. | MR

[7] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR

[8] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, 2, Mir, M., 1984, 526 pp.; 752 с.

[10] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987, 544 pp. | MR

[11] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983, 384 pp. | MR

[12] Bogachev V. I., Gaussovskie mery, Nauka, M., 1997, 352 pp. | MR

[13] Girko V. L., Predelnye teoremy dlya funktsii sluchainykh velichin, Vischa shkola, Kiev, 1983, 208 pp. | MR | Zbl

[14] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR

[15] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 591 pp. | MR

[16] Ilin V. P., Kuznetsov Yu. I., Trekhdiagonalnye matritsy i ikh prilozheniya, Nauka, M., 1985, 207 pp. | MR